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Abstract— Person identification is a fundamental robotic 

capability for long-term interactions with people. It is important 

to know with whom the robot is interacting for social reasons, as 

well as to remember user preferences and interaction histories. 

There exist, however, a number of different features by which 

people can be identified. This work describes three alternative, 

soft biometrics (clothing, complexion, and height) that can be 

learned in real-time and utilized by a humanoid robot in a social 

setting for person identification. The use of these biometrics is 

then evaluated as part of a novel experiment in robotic person 

identification carried out at Fleet Week, New York City in May, 

2012. In this experiment, Octavia employed soft biometrics to 

discriminate between groups of 3 people. 202 volunteers 

interacted with Octavia as part of the study, interacting with the 

robot from multiple locations in a challenging environment. 

Index Terms— I.2.9 Robotics, Person Identification, Soft 

Biometrics  

I. INTRODUCTION 

Most robots do not know whom they are interacting with.  

Even in relatively sophisticated interaction scenarios (e.g., 

museum guides [1] or game scenarios [2], the robot does not 

typically know the identity of the person.  Knowing someone’s 

identity allows the robot to gather user preferences, use 

appropriate forms of address and pronouns, keep track of what 

that person knows (or does not [3]), and many others. Probably 

the most commonly used method of identifying people is to use 

registered RFID tags (or similar); this approach has the 

advantage of being simple and robust in a large number of 

environments.  Unfortunately, it is only appropriate for people 

who already have the technology and allow access or requires 

the robots to give out RFID tags so they can interact.   

Our approach is to attempt to uniquely identify people on a 

mobile robotics platform without providing unique tags, 

emitters, or clothing:  to be able to identify people using some 

of the same cues that people do.  Typically, this would be 

accomplished by building individual models of people using 

traditional biometrics like face recognition and/or speaker 

recognition. To enroll in these systems, an individual will 

approach the robot and have a picture taken and/or speak to the 

robot for a few seconds.  Later, the robot can identify people 

who have been enrolled.  These biometrics have been shown to 

be extremely robust across large datasets [4].  Unfortunately, 

on a mobile platform, uniquely identifying an individual 

becomes very difficult, primarily because of dynamic changes 

in the environment or sensing situations.  For example, as the 

robot moves to new locations or shifts its head elevation and 

orientation, lighting conditions or ambient noise levels may 

change, people may alter their pose, or they may not be looking 

at the camera in an optimal manner.  It is neither practical nor 

good interaction practice to ask an individual to re-enroll every 

time lighting, noise, pose, or location changes. 

Our solution to this problem is to use soft biometrics. In 

contrast to traditional biometrics, which can uniquely identify 

people, “soft” biometrics, such as gender, height, clothing, hair 

color, etc, lack enough distinctiveness and permanence [5] for 

unique identification. The precision of soft biometrics can be 

affected by the same issues as traditional biometrics, but 

because each soft biometric uses different information, they 

can be overall quite robust. In fact, Reid and Nixon [6] suggest 

that by fusing enough soft biometric modalities, a computer 

could still uniquely identify people.  

This work demonstrates that even small (three) numbers of 

soft biometrics can achieve quite good person identification 

results in a perceptually challenging environment. Biometrics 

for describing clothing, complexion, and height were 

successfully utilized in a human-study conducted at Fleet Week 

in New York (Figure 1), with our humanoid robot, Octavia. 

Interacting with over 200 volunteers as part of more than 100 

“identification” games, Octavia averaged a 90% correct 

identification rate with just soft biometrics. 

 

Fig 1. Octavia at Fleet Week. 
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II. RELATED WORK 

Soft biometric research has generally focused on fusion 

with other soft modalities or traditional modalities to recognize 

individuals. Park [7] combined gender and other facial marks to 

improve the precision of identification when combined with 

face recognition. Lawson and Martinson [8] demonstrated 

increased precision using a Markov Logic Network to fuse soft 

modalities (complexion, clothing) with traditional biometrics 

(speaker recognition, face recognition). The advantage of this 

type of fusion is that it allows contextual information (i.e. 

environmental conditions that might impact precision, like 

distance to the person) to be integrated into the identification 

decision. Jain [5] used gender, ethnicity and height to improve 

the precision of a fingerprint recognition system. Fingerprint is 

a “contact biometric", which means that the types of soft 

biometrics that can be used in this domain can be extended to 

include those that might include some measurement that 

requires physical contact with the person. Towards that end, 

Ailisto et al [9] explored the use of body weight and fat to 

enhance the performance of fingerprint recognition. 

Similarly, multiple soft biometrics can be used to identify 

individuals uniquely. One advantage of this type of approach is 

that a textual description of an individual can be turned into a 

biometric signature to recognize individuals. Further, when a 

sufficient number of soft modalities are combined, it is quite 

possible to get very high levels of precision. Reid and Nixon 

[6] combined multiple manually marked semantic traits of the 

individual to recognize people. Demirkus et al. [10] use a 

number of facial soft biometrics in addition to other soft 

modalities to track individuals in handoff regions between 

different video surveillance cameras. 

III. METHODOLOGY  

This section details the person identification system used by 

Octavia during interactions with people. This includes 

descriptions of the person tracking system, the three soft 

biometric modalities being investigated (clothing, complexion, 

and height), and our method of data fusion.   

A. Person Detection and Tracking 

A time-of-flight (ToF) camera (SR4000) is used for 

detection and tracking. The advantage of using the ToF camera 

is the ease with which foreground can be isolated.  Large depth 

discontinuities will exist along the boundary between the 

foreground and the background.  Therefore, objects in the 

foreground will have similar depth information and will have 

significant depth discontinuities along the edges of the object. 

We use connected components analysis to find these regions 

(Figure 2).  In this step, each pixel in the depth image is 

compared to its 8-neighbors. If the difference in distance is less 

than a threshold they are included together in the same object.  

Large connected components are processed to determine if 

they are a person.  While there are a number of ways to do this, 

one conceptually simple yet effective approach is to look for 

large connected components with a face.  If a face is detected 

with a sufficiently high confidence, the region is determined to 

be a person and it is added to the list of active tracks.  Figure 5 

shows an image of this process.  In the figure, two large 

connected components have been found.  Both have plausible 

human-like shape, but only one connected component has a 

face. For face detection, we use the Pittsburgh Pattern 

Recognition SDK (PittPatt)  [11]. 

Tracking takes advantage of the notion that the shape of a 

person should not change significantly from one frame to the 

next.  We compare connected components found in consecutive 

frames using Tanimoto similarity.  Tanimoto measures the ratio 

of the number of overlapping pixels over all of the pixels.  

Higher Tanimoto similarity scores (Eq 1) between components 

(C1,C2) indicate that the two connected components belong to 

the same individual. 

 Eq 1 

B. Soft Biometrics:  

Octavia uses 3 soft biometrics to identify people: clothing, 

complexion, and height. All three currently assume an initial 

training session, during which a model of the individual can be 

constructed. During Fleet Week, models were created as part of 

a game played by the participants before the robot guesses 

identities. More details are provided in Section IV.  

1) Clothing and Complexion 

Clothing and complexion depend on face detection. When a 

face is detected in the RGB image using PittPatt, regions 

relative to the detected face are extracted from the image for 

creating color histograms (Figure 3). Part of the detected face is 

used to create the complexion model (Figure 3), and an area 

below is used to create a clothing model. Selection of regions 

in this manner provides relatively well lit and pose tolerant 

areas that can be used for sampling. Although alternative 
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Fig 2. (Left) Intensity image from the SR-4000. (Right) Tracked and 

segmented human observer. 

 
Fig 3. Boxes showing the regions used for complexion 

(about nose and forehead) and clothing are shown 

relative to the detected face position. 
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methods exist (e.g. GMM [12]), color histograms have been 

used successfully in other fused biometrics systems [8]. 

Color histogram models are created to measure the 

frequency of each color in the identified regions. To create a 

color histogram, H, each channel (r, g, b) is quantized using the 

4 most significant bits.  The resulting data are then 

concatenated, producing a 4096 bin histogram.   

Histograms are compared using a modified χ
2
 similarity 

measure (Eq. 2).  During enrollment, a new histogram is 

compared against existing models.  If it is sufficiently different 

from known histograms it is retained, otherwise, its support for 

an existing histogram is noted.  Those histograms that have not 

received a sufficient amount of support during training are 

discarded [8].  This provides tolerance to situations when 

landmarks are not correctly detected, or motion blur affects the 

appearance of the individual.  
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2) Height 

An individual’s height is determined by converting detected 

face positions (x,y,z) in the SR4000 intensity image into a real-

world coordinate frame. By comparing pixel locations to the 

corresponding depth image, Octavia determines both a known 

direction and distance. Then, forward kinematics are applied to 

identify the transformation matrix from the base to the SR4000.  

There are five motors involved in estimating the 

transformation matrix: torso pan, neck pitch, head pan, head 

pitch, and head roll. Although head roll is not generally used in 

tracking, in order to keep people vertically aligned in the 

image, it must still be included when calculating the 

transformation matrix from camera to robot local space. The 

transformation matrix for each individual joint is derived from 

the associated Denavit-Hartenberg parameters. 
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Eq 3 

The height of an individual was then created from the 

average height of the last 20 detected face positions (~1.2 sec). 

A height model for an individual was simply the last average 

measured face height of the training data. 

 Given two height measurements, the similarity between 

them (e.g. likelihood of being the same individual) was then a 

linear function up to 15 cm in difference. 
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C. Fusing Results 

The fusion rule was that of weighted summation. All scores 

were normalized to 1.0, then summed together and divided by 

the number of available modalities. The weights {Wcloth, Wcompl, 

Wheight} were assigned to be {1.0, 0.1, 1.0} during Fleet Week. 

The complexion weight was set low because of poor 

demonstrated precision during initial testing. However, the 

nonzero weight meant complexion was still the tie breaker 

when combined clothing and height scores were not enough. 

When data are missing for a given modality, the weight for 

that modality was assigned to be zero. This rule was necessary 

to handle partially missing modalities. For example, a clothing 

model could not be created for individual X because too little 

clothing data were acquired during training due to the person 

moving around. However, during testing, X stood still and a 

color histogram was created. That histogram can still help 

suppress other identification scores, but should not contribute 

to X’s combined score since he does not have a clothing model. 

IV. FLEET WEEK EXPERIMENT 

Fleet Week in New York City is a once a year event in 

which the US Navy and Coast Guard make active duty ships 

available for public viewing. It is also a time for demonstrating 

other Navy hardware and research endeavors. This year, 2012, 

the robot Octavia was invited back to meet the public. Octavia 

made her first appearance at Fleet Week in 2010.  

The person identification experiment was structured as a 

game. Three volunteers were instructed to stand in specific 

locations (~1.5-m away) in the region facing the robot. Then 

the robot would look at each individual and build models for 

three soft biometrics: clothing, appearance, and height. Models 

were constructed from up to a maximum of 20 sec of data. 

Usually, however, models were from much less, as individuals 

did not always look at the robot. After learning models, the 

robot would “close its eyes”, and people would change places. 

Then the robot would look at each of them and try to identify 

them using the soft biometrics models. 

Octavia played a total of 105 games. 67% of the game 

participants were volunteers from the audience, while the 

remaining 33% were with the experimenters. The purpose of 

this experiment was three-fold. First, we are establishing the 

applicability and performance of soft biometrics in human-

robot interaction. Second, it is a rejection experiment, 

evaluating the false-positive rate of watch-list based hard 

biometrics (e.g. face and speaker). Finally, it is data collection 

for learning person identification models over longer periods of 

time. The end goal is to develop a system from this data that 

can improve hard-biometrics models over time without 

requiring repeated training type interactions. 

A. Robot Data Collection 

The Xitome Mobile-Dextrous-Social (MDS) humanoid 

robot, Octavia (Figure 4) is our platform for exploring lifelong 

learning in biometrics. Designed for human robot interaction, 

the MDS robot has 8 DoF for the head, neck and eyes allowing 

the robot to pan or tilt the camera as needed to look at arbitrary 

locations in 3D space. An additional 33 degrees of freedom 

enable gestures and facial expressions. This humanoid body 

sits atop a two-wheeled Segway base.   

Throughout all of the games, Octavia continuously 

recorded data from her onboard sensors. This included: 

 Color Camera: Located in the right eye, Octavia stored 
640x480 RGB images at ~4 Hz from a Point Grey Firefly 
camera. A sample image is shown in Figure 5 (top). 
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 SR4000: Located in Octavia’s forehead, the SR4000 
produced a 176x144 intensity and depth image. These 
were stored at ~17 Hz. A sample image is shown in 
Figure 5 (bottom). 

 4 Microphones: Located on the body and backpack, these 
were Shure MX100 lavalier microphones with the cardiod 
package (sampled at 32768 Hz). 

 Joint Angles: stored the current state of the entire 
kinematic chain from torso to eye (torso pan, neck pitch, 
head pan, head pitch, head roll, eye pitch, eye pan) at ~4 
Hz. 

Games were indexed by time, and the boundaries of both 

training and testing session clearly marked in the database.  

The exhibit itself measured 20x15’ and was roped off to 

prevent bystanders to get too close to the robot. 

B. Environment Setup 

The Octavia exhibit was located on the interior of pier 90, 

where the USS Wasp aircraft carrier was moored. People lined 

up in the middle of the pier to visit the carrier, and then 

returned along the edge past the exhibits. Octavia was the last 

exhibit on the pier, but not the last exhibit at Fleet Week. 

Normally used as a parking lot, lighting on the pier was a 

significant problem for perception. Large, metal rolling doors 

let in natural light behind the Octavia exhibit. These were 

supplemented by small numbers of overhead lights. To make 

the environment friendlier for color perception, we left the 

metal doors mostly closed and setup lights and a backdrop.  

Acoustic perception was also very challenging in this 

environment. Ambient noise due to weather (rain, thunder, and 

wind) was significant and irregular. This was usually 

dominated, however, by speech noise from the crowd. Average 

noise levels regularly topped 70 dBA with peak noise being 

much higher. Even using 2 speakers mounted approximately 3 

ft to either side of the robot to amplify Octavia’s speech output 

(Cepstral TTS), volunteers regularly asked for help in 

understanding what the robot said due to ambient noise levels. 

C. Game Procedures 

The game itself involved 3 stages: training, moving around, 

and recognition. Volunteers were separated from the crowd, 

and brought behind the ropes to stand against the white 

backdrop. They were told by the experimenter to stand on one 

of 3 locations where the robot would look for people during the 

game. Then, once all three volunteers were situated, the 

experimenter described the expected game progress from 

beginning to end. For additional assistance, an experimenter 

stood nearby, ready to answer questions about what the robot 

said and to maintain participant safety. Any questions 

regarding the details of the system or otherwise not related to 

the game in progress were deferred until after the game had 

finished. 

1) Training 

In the first phase, Octavia needed to acquire a model and an 

identifier for each individual. For each of three pre-specified 

locations, she rotated her head and torso to center that location 

in the image. Then she looked straight, up, and then down, 

trying each position until a face was found in the SR4000 

intensity image. After detecting the individual, Octavia 

readjusted torso pan, neck pitch, head pan, head pitch, eye 

pitch, and eye pan to place the individual at the top of the 

image in both the rgb and depth cameras. Additional 

adjustments to pose were made throughout the entire game 

whenever pose varied by >0.1 rad. 

After detecting the individual and adjusting pose, Octavia 

first asked for an identifier. This was done as a question about 

the volunteer’s favorite flavor of ice cream, color, animal, 

planet, or sport. The answer provided by the volunteer was 

 

 
Fig 5. (Top) An rgb image collected during a game with Octavia. (Bottom) 

An SR4000 intensity image collected at the same time. 

 
 

Fig 4. Octavia has a color camera and an SR-4000 time of flight sensor 

mounted in the head. For audition, it uses a 4-element mic array spread 

across body and backpack. 
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manually entered by the experimenter into the person-id 

system, and was attached to all subsequently collected data and 

biometric models. When the experimenters participated in the 

shell game, their names were used to preserve consistency 

across games. 

With an established identifier, Octavia next asked the 

volunteer to speak on a subject for up to 30-sec. Subjects were 

randomly selected from one of 5 topics. No subject topic or 

identifier question was repeated during the game to avoid 

confusion. The topics initiated by Octavia were as follows: 

 “Tell me about your favorite part of the U.S.S. Wasp.” 

 “Tell me about your favorite movie robot and why.” 

 “I give up. What would YOU like to talk to a robot 
about?” 

 “You are just about to escape fleet week. What are you 
going to do next?” 

 “After fleet week, do you think I could play for the 
Mets?” 

Octavia recorded 20-sec of data after asking the volunteer 

about a subject. Although participants were told beforehand 

that they could speak for as long or as little as they would like, 

most participants spoke only a sentence in response. Despite 

the limited utterance length, 20-sec was still necessary to 

guarantee participants looked at the robot long enough to build 

a model. Often, they would look around while the robot was 

building models, limiting the number of full-on frontal views of 

the face. 

 After 20-sec, Octavia said, “Thank you {ID}. I think I can 

recognize you now,” where {ID} was the identifier provided 

previously. Then she would rotate to face the next individual 

and repeat. 

2) Moving Around 

Once the training phase was completed for all three 

volunteers, Octavia said, “Now I will close my eyes and 

people should move around. Then I will try to recognize each 

of you.” She then closed her eyes and slowly counted to five. 

People were told previously that they could either move or stay 

where they were to try and fool the robot, but they 

overwhelmingly choose to change positions. On reaching the 

number five, Octavia said, “Ready or not, here I come,” and 

opened her eyes.  

3) Recognition 

In the final phase, Octavia again turned to face each of the 

locations in turn and tried to recognize the individual based on 

soft biometrics models. As during training, Octavia had to find 

the individual’s face first by looking up and down, and then 

continuously updated her viewing angle to keep the face 

towards the top of the image in both cameras. Once they were 

detected, Octavia said, “I'm sure I can do this, but maybe you 

could give me a little hint about your identity?” Because 

participants were warned ahead of time that this was optional, 

most simply stated, “No” or shook their heads in the negative. 

After asking for a hint, Octavia again looked at the subject 

for 20-sec, using all images where a face was detected to 

match clothing and appearance, and using tracking data to 

estimate height. At the end, Octavia guessed the participants 

identity from the 3 possible subjects based on maximum 

likelihood. No memory was employed to improve 

performance, so Octavia could make the mistake of guessing 

the same individual twice in a single game. 

V. RESULTS 

The experiment at Fleet Week was structured as a game to 

encourage participation by the volunteers and attract additional 

volunteers from the audience. As part of the game, Octavia 

would announce her guess after each testing session. Over all 

6-days, including games with both volunteers and 

experimenters, Octavia averaged 90% correct identification 

rates using just the three soft biometrics. This performance is 

very encouraging as precision would have been even higher, 

except that this includes hardware failures and software 

problems (e.g. failing to retrieve models from the database). 

Such problems are not usually presented in biometrics 

software, as they are evaluating datasets instead of systems. 

Unfortunately, we do not have the actual numbers to exclude 

hardware concerns, as not all system issues were immediately 

evident. A post-analysis of the results (described in Section 

V.C) suggests that precision should have been closer to 94%. 

In the remainder of this section, we analyze in depth each 

of the individual biometrics that Octavia used for person 

identification. These post analyses focus on only a single day 

of data containing 21 games of 3 people, with 46 volunteers 

and 6 experimenters participating. Over each 20-sec period, 

~80 color and ~340 intensity/depth images were collected. 

Each participant was described by a minimum of two such 

sessions: one training, and one testing. Of the color images, 

95% of those images have faces in them, and ~80% are images 

with angles of incidence <15 degrees. These measurements 

were estimated using the PittPatt SDK [11]. For the SR4000, 

used by the height biometric, the average testing session 

contained 285 measurements/person.  

A. Post Analysis Description 

Performance of individual soft-biometrics was measured 

using both closed-world and open-world analyses. In the 

closed-world analysis, each datapoint was compared to K 

models, where K was the number of players. The model with 

the highest similarity was the winner. Games were remixed to 

create matchups between game participants and increase the 

number of overall possible comparisons. Given N different 

models (this is not the number of participants, because 

experimenters were present in multiple games), all possible 

combinations of 2, 3, 4, or 5 players were investigated. Two 

models for the same experimenter were never evaluated as part 

of the same game. Furthermore, when an experimenter was one 

of the subjects in the matchup, the closed world analysis for 

that matchup also included all test-sets in which the 

experimenter in question was present. 

In the open-world analysis, each model was compared to 

every datapoint in the database, across all subjects, and raw 

similarity scores were calculated. All scores greater than some 

threshold were accepted as belonging to that model. By varying 
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that threshold, we examined how the correct accept vs false 

accept rate changes for each biometric. 

B. Clothing 

Clothing was the most reliable of the individual biometrics. 

The closed-world analysis for each is given in Table 1. Note 

that precision is estimated across all testing images with 

detected faces, and is defined as the number of correctly 

identified individuals over the total number of faces. Also note 

that this analysis excludes those games where an individual did 

not have a model. 

Table 1. Soft-biometrics precision as it varies with the number of players. 

Number of 

Players 
Clothing Complexion Height 

2 0.932 0.841 0.884 

3 0.884 0.742 0.796 

4 0.848 0.674 0.725 

5 0.818 0.624 0.664 

When using the entire 20-sec training session, only one 

individual was not modeled. This happens when too few faces 

are detected during the training session, and/or there is too 

much variation in the recorded clothing data. In this particular 

case, the robot failed to center the camera on the individual’s 

head correctly.  

An open question regarding clothing is the need for the full 

20-sec of training. To explore the effects of the training set 

size, models for each person were also created using only the 

first 5-sec of training data. For clothing, the effect on precision 

was <0.1% for all game sizes. 

Figure 6 plots the ROC curve for all modalities. Again, 

clothing is highest with a correct accept rate of 79.0% for a 

false accept rate of 10%.  

C. Complexion 

Complexion was the least precise soft-biometric. With 3 

people, precision was 74% in the closed-world analysis. This 

was evident during initial testing at Fleet Well as well, hence 

the reason why complexion was assigned a very low weight in 

the final fusion system.  

Complexion also had significant effects from changing the 

training session size. When using only the first 5-sec of the 

training session to build a model, 6 models failed to gather 

enough data. Even when models were constructed, they were 

less accurate. In Figure 6, the curve representing the smaller 

training session size (Appearance – 5sec) reaches only 49.9% 

correct accept rate when at 10% false accept rate. Using the full 

training set raises the correct accept rate to 52.7%. In the closed 

world analysis, the smaller training session demonstrated in a 

decreased precision of ~2% for each player count condition. 

D. Height 

The final soft-biometric, height, appears to fall somewhere 

in the middle in terms of precision. It is 4-5% better than 

complexion, but falls off much faster than clothing with the 

number of players in the game. The ROC curve shows a similar 

story, reaching only a 62.5% correct accept rate at a 10% false 

accept rate. 

Unlike clothing and complexion, the height model is 

calculated from a running average of 20 frames. Although 

more data could be incorporated from the rest of the session, 

that would lower precision for two reasons. First, people do not 

always stand straight when talking. As they change their pose, 

their height will appear less than normal to the robot. The 

second problem is a robot problem. Because the robot needed 

to center people in its field of view, it moved during data 

collection. This resulted in erroneous height estimates when the 

recorded robot joint angle positions could not be updated at as 

fast of a rate as the SR4000.  

To evaluate height without these movement related issues, 

we scored just the end points of each session. By the end of 

testing, people were done moving around, and the robot had 

long since stopped moving to finish centering subjects in the 

image. Using only these scores, which were the ones actually 

used by the fusion system, increased precision by 4.8% for 

games with 3 individuals. The full results are in Table 2. 

Table 2. Precision of the height biometric when examining only the end 

measurements of each session. 

Player Count 2 3 4 5 

Precision 0.918 0.844 0.779 0.720 

Note that similar analyses of clothing and complexion 

failed to demonstrate any such difference between overall and 

endpoint performance. 

E. Fusion 

Combining the three biometrics together provided the best 

overall precision for all player counts. For 3 players, the 94.3% 

precision across all hypothetical games is close to the actual 

95% measured at Fleet Week for that day. The combined 

results are summarized in Table 3: 

Table 3. Soft-biometrics precision as it varies with the number of players in a 

game. 

Player 

Count 
Clothing* Clothing + Height 

Complete Fusion 

System 

2 0.932 (0.922) 0.969 0.970 

3 0.884 (0.873) 0.941 0.943 

4 0.848 (0.835) 0.914 0.917 

5 0.818 (0.804) 0.887 0.891 

*The numbers in () indicate precision over all games, including those where an 
individual was not modeled in training.  

 
Figure 6. ROC curve comparing correct accept rate vs false accept rate 

for each of the individual biometrics. 
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Note that Table 3 examines precision over all games, unlike 

Tables 1 and 2, which excluded games where no models were 

present. As such, the clothing precision is decreased due to a 

single missing model. The addition of height to the clothing 

biometric provided a substantial precision increase over 

clothing alone, the best single biometric. Appearance further 

increased precision, but by a more modest amount (see the 

ROC curve, Figure 7). 

One of the most interesting issues with soft biometrics 

concerns which specific measures play a significant role in 

increasing the accuracy of the system.  To investigate this 

question, we used logistic regression.  A simple description of 

logistic regression is that it is a multiple linear regression 

model with a dichotomous variable as an outcome variable; a 

more detailed description can be found in [13]. The outcome of 

the system (correct or incorrect) was the dichotomous 

dependent variable.  The match score of each of the three soft 

biometrics were the predictors
1
.   

The overall logistic regression was statistically significant, 

χ
2
 (3) = 463.5, p < 0.0001.  All three variables were statistically 

significant, suggesting that all three made an important 

contribution to the overall success of the model.  Another way 

to examine whether the complexion biometric had an impact on 

the overall model was to compare a model that had only 

clothing and height with a model that had clothing, height, and 

complexion.  Consistent with the earlier analysis, the full 

model was statistically better than the model with only clothing 

and height, χ
2
(1) = 67.4, p < 0.0001. Both these results suggest 

that, even though the gain in performance was relatively 

modest, it is an important biometric to include in future models. 

VI. DISCUSSION 

The person identification experiment at Fleet Week 

demonstrated the utility of soft biometrics for identification in a 

social setting. Although the game was a closed-world system 

with only 3 subjects, groups of three or less are not uncommon 

social situations in which a robot would require rapid, accurate 

person identification, and soft biometrics can obviously 

contribute. By fusing multiple soft-biometrics together, a robot 

can even increase the interaction group size to 5 people and 

still maintain near 90% precision. That would handle all but the 

most challenging crowd situations, and allow people the 

freedom to move about during an interaction. 

The obvious question, though, is how such soft biometrics 

compare to traditional biometrics like face recognition. The 

answer is that face recognition is a more mature technology 

with higher recognition rates, even from limiting training data. 

But it is not a solved problem, either. Face recognition systems 

are negatively impacted by different lighting conditions from 

training, high angles of incidence to a face, and even simple 

props like glasses. Under such circumstances, however, visual 

person identification by people degrades as well [14]. So 

people rely on multiple cues, like voice plus face [15] and 

likely many others. Soft biometrics can help robots do the 

                                                           
1
 For this analysis, the full training data set for each user 

was averaged to provide a single prediction point per biometric. 

same, adding alternative recognition features to bolster the 

performance of other systems like face and/or speaker 

recognition. 

Soft biometrics may also help improve communication with 

people, by adding relevant context to a scene. In contrast to 

face recognition, which often uses arbitrary machine generated 

features to describe a face, features such as clothing, height, 

gender, and even complexion have linguistic descriptors. A 

robot describing an unknown individual to a human partner 

could utilize soft biometrics as part of its descriptions of the 

environment (e.g. “He is tall, pale skinned, and wearing a white 

shirt with some red on the front”). Choosing the appropriate set 

of discriminators in a crowded setting is an interesting 

challenge in itself. Conversely, a human could tell a robot 

about unknown individuals the robot will meet in the future – 

letting the robot rapidly assign names to faces and build better 

models as it finally meets them. 

In the remainder of this section, we will discuss the 

performance of the existing soft biometrics, as well as how to 

expand upon these results in the future. 

A. Color Histogram Performance Differences 

Color histograms were used as part of two different soft 

biometrics: clothing and complexion. Where clothing was the 

strongest of the three evaluated as part of the Fleet Week 

testing, complexion was the weakest. This discrepancy occurs 

because the color histogram model is good at picking up on 

major differences in color while being insensitive to small 

changes. When there are wide ranges of color differences 

between individuals, as with clothing, this is a strength. Small 

differences in those cases are most likely the effects of lighting 

or pose changes. Complexion, by contrast, consists of a much 

narrower range of colors. That same strength for clothing 

recognition means the current color histogram approach is not 

sensitive enough to pick up on small changes in color, which is 

necessary for robust complexion modeling.   

B. Training Set Size 

The post-analysis revealed differences between the 

biometrics in the size and shape of the training set required. 

Where clothing precision changed very little with a 5-sec 

 
Fig 7. ROC curve comparing the performance of clothing alone to three 

fusion systems. The combined system is on top, often matched by 

clothing and height.  
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training set (as opposed to 20-sec), complexion improved 

significantly, with fewer missing models and a greater 

precision for those that were created. Height, by contrast, 

actually needed very little of the training data, but the timing of 

the data collection was important. 

The minimum training duration is most likely related to the 

size of the feature space being modeled and the amount of 

noise in the feature space. As discussed previously, complexion 

is an impoverished feature space, and so benefitted from 

increased training time to eliminate the effects of noise. 

Clothing did not need the extra time because the variations 

were already so large. Height, by contrast, is also an 

impoverished space, but the noise is not random, so a longer 

training time does not help. Instead, significant height 

variations were due to posture changes that do not happen 

often, but which impact measurements for longer.  

C. Removing Face Detection 

The Fleet Week experiments demonstrated the potential of 

soft biometrics for recognition, but all of the existing 

algorithms currently rely on face detection. Clothing and 

complexion use the face position to identify where to sample 

the image, while height is estimated directly from the detected 

face location. At least two of these biometrics, however, should 

not need faces. Clothing is often recognizable from the back, or 

from far away, well before a face is detected. Height should be 

to the top of the head, and not require a face at all. 

The challenge is not so much in the biometrics, though, but 

in the person detection itself. Faces are the easiest way of 

separating a person from other objects in the background. 

Although tracking objects from depth images after a face has 

been detected alleviates the need for constant face detection, 

the robot cannot monitor every direction simultaneously. When 

it moves the head, it loses active tracks and needs to find faces 

all over again. People are not only separable from the 

background by faces, however. They also move, and have 

distinctive shapes [16]. Initiating tracks by more methods than 

just face detection, should enable the use of soft biometrics 

from a wider variety of relative positions.  

VII. CONCLUSION 

This work has demonstrated the utility of soft-biometrics 

for person identification as part of human-robot interaction. 

Three soft biometrics (clothing, complexion, and height) were 

evaluated individually and in a combined, fusion system as part 

of a human-study with a real robot at Fleet Week in New York 

City involving more than 200 volunteers. The combined person 

identification system correctly identified participants 90% of 

the time over a 6-day period, with the biometric describing 

clothing being the individual metric with the greatest utility. 

Although one biometric was strongest, the contribution of 

each of the proposed biometrics was statistically significant. 

They differed in what they measured, and how much training 

was required, but each added precision to the combined system. 

The challenges now are in improving the interaction, reducing 

the structure required for training person identification, and 

expanding the role and generality of such soft biometrics in 

recognizing people. 
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