
Available online at www.sciencedirect.com
www.elsevier.com/locate/cogsys

Cognitive Systems Research 12 (2011) 134–143
A memory for goals model of sequence errors

Action editor: David Peebles

J. Gregory Trafton a,⇑, Erik M. Altmann b, Raj M. Ratwani a

a AI Center, Naval Research Laboratory, United States
b Department of Psychology, Michigan State University, United States

Received 20 January 2010; accepted 26 July 2010
Available online 26 January 2011
Abstract

A model of routine sequence actions is developed based on the Memory for Goals framework. The model assumes that sequential
action is guided by episodic control codes generated for each step, and that these codes decay with time and can be primed by contextual
retrieval cues. These control codes serve a place-keeping function that allows the system to infer the correct next action after performance
is interrupted. According to the model, perseveration (repeat) errors occur because an older episodic trace intrudes due to noise in the
system. Anticipation (skip) errors occur because of failures in reality monitoring, in which the model believes that it has completed a step
it has not. The model predicts that perseveration errors should occur more frequently than anticipation errors, and that perseveration
errors should occur in a graded fashion away from the current step. Across two different experiments, these predictions were supported at
both a qualitative and a quantitative level.
Published by Elsevier B.V.
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1. Introduction

Several researchers have described classes of errors that
people make as they perform routine sequential actions
(Baars, 1992; Norman, 1981; Reason, 1990). The classes
have mainly been derived from diary studies (Reason,
1990) and from neurologically damaged patient studies (Sch-
wartz, Montgomery, Buxbaum, & Lee, 1998), but also in
some instances from experimental studies (e.g., post-comple-
tion errors: Byrne & Bovair, 1997; Ratwani, McCurry, &
Trafton, 2008). This report will focus on sequence errors.

Sequence errors occur during routine action and consist
of perseverations, omissions/anticipations, and intrusions
(Reason, 1984). Perseveration errors are repeats of a previ-
ous action, such as putting cream in a cup of coffee more than
once. Perseveration errors can be further classified into con-
tinuous perseveration errors, which occur when an action is
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performed over and over, and recurrent perseveration
errors, which occur when a previously completed subtask
is performed again, usually with one or more intervening
subtasks (Sandson & Albert, 1984). Omissions are skipped
steps, while anticipation errors are skipped steps that are
quickly rectified. For example, an omission error would be
completely forgetting to put cream in a cup of coffee, while
an anticipation error would be attempting to pour from an
unopened container. In practice, it can be quite difficult to
differentiate omission and anticipation errors (Cooper &
Shallice, 2000). Intrusion errors (sometimes called capture
errors) occur when an action comes from a different, usually
related, task. For example, a capture error would occur when
a person attempts to make a cup of coffee but gets distracted
by a tea bag and instead makes tea.

1.1. Previous models of sequential behavior

There are two computational models of routine sequen-
tial behavior: the interactive activation network (IAN)
model (Cooper & Shallice, 2000, 2006) and the simple
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recurrent network (SRN) model (Botvinick & Plaut, 2004,
2006).

In the IAN model, different schemas compete for activa-
tion. Activation comes from triggers (environmental or
context) and source-schemas (related schemas), but a
schema will not be activated if it is not over a specific
threshold. Thus, while working on a routine task, the selec-
tion of a schema is influenced by the current schema and
the state of the world. The IAN model suggests that errors
are caused by a lack of attentional resources or distraction
in normal populations (Cooper & Shallice, 2000; Norman
& Shallice, 1986). Variability in attentional resources is
instantiated in IAN by noise. In the case of sequence
errors, noise has two major effects. First, noise in the sys-
tem can cause variability in the ordering of schemas that
do not have ordering constraints. Second, noise can cause
variability in the selection of which schema is selected when
multiple schemas are applicable. Both these forms of vari-
ability can cause various sequence errors.

The SRN model (Botvinick & Plaut, 2004) has a set of
input units that are activated by features of the environ-
ment. Activation is passed along the input units to a set
of hidden units, which receive recirculated activation. The
hidden units then pass activation to a set of output units
that then perform an action (fixating an object, pouring
an object, etc.). The connection weights encode series of
sequential attractors which the trained model tends to fol-
low (Cooper & Shallice, 2006). Errors in the SRN model
are made because of noise, which can cause the network
to drift to a related task sequence that contains a state
(i.e., a sequential attractor) that resembles the next correct
one. Thus, an error is made by the SRN model not because
an attentional operation has been omitted, but because the
model’s internal representations have lost information
about a previous or current state (Botvinick & Bylsma,
2005; Botvinick & Plaut, 2004).

1.2. The memory for goals model

To understand sequence errors following task interrup-
tion, we adapted a model that we have previously used to
interpret how subgoals are suspended and resumed in a
problem-solving task (Altmann & Trafton, 2002; Hodgetts
& Jones, 2006), and which has since been used to interpret
the time costs of interruption (Altmann & Trafton, 2002;
Hodgetts & Jones, 2006; Trafton, Altmann, Brock, &
Mintz, 2003) and factors affecting post-completion error
(Li, Blandford, Cairns, & Young, 2008).

The MFG model is based on the hypothetical construct
of activation of memory elements—in particular, activation
as construed in the ACT-R (Adaptive Control of Thought-
Rational) cognitive theory (Anderson, 2007; Anderson
et al., 2004). The MFG model inherits two basic processing
assumptions from ACT-R. The first is that when central
cognition queries memory, memory returns the item that
is most active at that instant. The second is that the activa-
tion of a given memory element fluctuates noisily from
moment to moment about a mean value. The MFG model
makes additional assumptions that govern the activation of
fine-grained episodic memory codes; these codes were task-
related subgoals in the original application of the model,
and here are codes linked to individual steps of a procedure
that serve a place-keeping function during sequential per-
formance. The first assumption is that, after an episodic
code is encoded, its activation automatically decays, such
that a retrieval request is more likely to return a recent code
than a less-recent code (all else being equal). The second
assumption, which is of less direct relevance here, is that
an episodic code can also be primed by contextual retrieval
cues, thereby overcoming effects of decay (Altmann &
Trafton, 2002).

The episodic codes that serve the place-keeping function
of interest here are what we refer to as control codes, mean-
ing codes that guide performance for the duration of a sin-
gle procedural step. These codes were introduced in a
model of cognitive control that incorporated many of the
same activation-related assumptions as the MFG model
(Altmann & Gray, 2008). The Altmann and Gray model
simulates performance in a task switching context, where
on each trial, a task cue is presented that tells the system
how to interpret the imperative stimulus that follows.
The model interprets the task cue by retrieving its meaning
from semantic memory, creates a control code from that
meaning, and uses the control code as a basis for interpret-
ing the stimulus and selecting a response. This model takes
an unusually fine-grained perspective on moment-to-
moment cognitive control, in which even a simple and clo-
sely-spaced process like interpretation of a task cue and
interpretation of an imperative stimulus must communicate
through episodic codes, which are then subject to architec-
tural processes like activation noise and decay. Models
constructed in the parent theory, ACT-R, generally do
not dissect cognitive control to this level of detail, but this
approach accounts for a wide range of behavioral data
(Altmann & Gray, 2008). Moreover, performance from a
wide range of tasks, ranging from perceptual-motor tasks
(Hommel, Müsseler, Aschersleben, & Prinz, 2001) to navi-
gation through information spaces (Altmann & John,
1999), tend to converge on a similar implication, which is
that the system encodes fine-grained episodic memories in
large numbers as an integral part of ordinary processing.

Here, we assume that processing on each step of a pro-
cedure is similarly governed by a control code. On each
procedural step, the system consults its declarative knowl-
edge, which we assume is well-learned, uses that knowledge
to create a control code in episodic memory, and uses that
control code to guide its processing for the duration of that
step, including its parsing of the external environment and
any responses it must make. This control code essentially
represents the information, “this is the step I am currently
on”, and serves as a reference point for any component
process that may have to run in the course of that step.
Because control codes decay, the current one will always
be the most active (modulo effects of activation noise), so
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any process can reliably assume that whatever code it
retrieves is the one it should act on.

After an interruption, the system can use a control code
to regain its place in the procedure. Here we assume that
the interruption most often occurs cleanly between
steps—that is, after one step has completed and before
the next has begun. This assumption is incorporated in
the model, such that, after an interruption, the model
assumes that the control code it retrieves was for the most
recently completed step, and therefore infers that the cor-
rect current step is the one after that. Occasionally, how-
ever, an interruption will occur after the system has
created the control code for a new step, but before it can
execute that step. In these cases, after an interruption, the
model again infers that the control code it retrieves was
for the most recently completed step—but in such cases will
be incorrect (as described below).

1.3. Accounting for sequence errors

All three models have different process explanations and
capabilities for accounting for sequence errors.

1.3.1. Perseveration errors

The IAN model does occasionally repeat steps, resulting
in a continuous perseveration error. This occurs when, due
to too much self-activation or lack of inhibition, a schema
is not deselected at the appropriate time, causing a schema
to be repeatedly selected. The IAN model cannot, however,
account for recurrent perseveration errors because once a
goal is completed it is “ticked off” and not a candidate
for later selection (Botvinick & Plaut, 2004; Cooper &
Shallice, 2000).

The SRN model does make both continuous and recur-
rent perseveration errors. However, one interesting aspect
of the original SRN model was that virtually all errors were
due to a capture process. For example, with a small
amount of noise, the network would occasionally drift to
a similar sequential attractor (a capture process) and repeat
a step (a perseveration error) (Botvinick & Plaut, 2004;
Cooper & Shallice, 2006). The fact that all errors use a cap-
ture process is both a strength and a weakness for SRN. It
is a strength because it shows that a single process can
account for a wide range of error types (Botvinick & Plaut,
2004). It is a weakness because there is some evidence that
some different error types have different processes (Cooper,
2007; Cooper & Shallice, 2006; Li et al., 2008; Schwartz
et al., 1998).

The MFG model explains perseveration errors as fol-
lows. After an interruption, the system retrieves an old con-
trol code and assumes that it represents the most recently
completed step. Most of the time, this assumption will be
correct. Sometimes, however, an older control code will
intrude, even though it is more decayed than the most
recent old code, due to noise in activation levels. In this
case, the model will repeat at least one step. For example,
if the second-most recent control code is retrieved, the step
corresponding to the most recent control code will be
repeated.

This mechanism predicts that perseveration errors after
interruption will form a gradient in which the most com-
mon one is to repeat the most recent step, the second-most
common one is to repeat the second-most recent step, and
so on.

1.3.2. Anticipation and omission errors

The IAN model also makes anticipation and omission
errors. Omission errors occur because a schema may not
have a high enough activation due to low self-activation
or poor environmental influences. Anticipation errors
occur for the same reasons, but the incorrect actions can-
not be executed because a precondition is not satisfied
(e.g., a container still has its top attached).

The SRN model occasionally makes anticipation and
omission errors, primarily through the capture process
described before.

The MFG model explains anticipation and omission
errors as follows. Again, after an interruption, the system
retrieves an old control code and assumes that it represents
the most recently completed step. Most of the time, this
assumption will be correct. Sometimes, however, the most
recent old code will represent an intended step, not a com-
pleted step. As we noted earlier, interruptions typically
occur between procedural steps, after one step has been
completed and the next not yet initiated. However, some
interruptions, as a function of noise in timing parameters,
occur after the model completes a step, and also after it
generates the control code for the next step, but before it
performs any cognitive or behavioral actions to implement
the next step. In this case, the control code retrieved after
the interruption would correctly be the one to execute,
but if the model follows its default processing, it will again
infer that the code it retrieves has been executed, and as a
result skip a step.

This can be viewed as a failure of reality monitoring, in
which the model fails to represent a distinction between a
step it has executed and a step it only intended to execute.
Indeed, the model has no explicit representation that dis-
tinguishes between intended and executed actions; there
are only control codes, which, after an interruption, the
system assumes represent completed actions. This is likely
an oversimplification relative to task environments that
involve lookahead search or some other kind of mental
simulation, where mental and physical states could more
easily become confused. Here, we assume that one step of
lookahead occurs on some proportion of interruptions, in
effect, but that when this happens it is accidental and the
system has no memory of it.

While all three models can account for the majority of
error types, neither IAN nor SRN makes strong predic-
tions about which types of errors should be more prevalent
in this type of task. MFG, however, makes a strong predic-
tion that perseveration errors should occur more often than
any other type of sequence error. Additionally, MFG
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makes a nuanced prediction that errors should be graded
from the correct step, especially with respect to persevera-
tion errors.

2. Experiment 1

There are very few existing datasets that can be used to
constrain or reject these different models (Botvinick &
Plaut, 2006). One of the issues is that when a task is rou-
tine, people generally make very few errors, making statis-
tical analysis difficult. Thus, different researchers have
examined errors in non-routine tasks (Ruh, Cooper, &
Mareschal, 2005), made the task difficult to remember
(Giovannetti, Schwartz, & Buxbaum, 2007; Ruh, Cooper,
& Mareschal, 2008) or interrupted participants during the
routine task (Botvinick & Bylsma, 2005). We used an inter-
ruption paradigm because interruptions have been shown
to increase error rates even on well-learned tasks (Li
et al., 2008; Ratwani et al., 2008). In addition, we provided
no global place-keeping (Gray, 2000) such that the next
step of the task could not be determined from visible cues.

2.1. Method

2.1.1. Participants

Fifteen George Mason University students participated
for course credit.

2.1.2. Task and materials

The primary task was a complex production task called
the sea vessel task (based on Li et al., 2008; Ratwani et al.,
2008). The goal was to fill an order for two different types
of sea vessels by entering in order details through various
widgets on the interface (Fig. 1). Order information was pro-
vided in the middle of the screen on the “Navy Manifest.” A
correct sequence of actions is required to complete the order:
(1) Enter Vessel Information, (2) Material, (3) Paint, (4)
Weapons, and (5) Location. Before entering information
into each widget, the widget must be “activated” by clicking
the corresponding selector button (lower right hand corner
of Fig. 1). Completing the information in each widget (i.e.,
completing one step of the procedure) requires the partici-
pant to add the information for both types of sea vessels,
and thus involves several perceptual and motor actions.

After completing each widget, the participant must click
“ok.” This action causes the information that the partici-
pant entered into widget to be removed from the display,
so that it cannot serve as an explicit cue indicating which
steps have been completed.

After the participant has finished entering information
into all five widgets, he or she must process the order, by
clicking the “Process” button. This action causes a small
pop-up window to appear informing the participant of
the total number of sea vessels that have been created. This
pop-up window served as a false completion signal (Rea-
son, 1990). Participants must click the “ok” button to
acknowledge this window. Finally the “Complete Con-
tract” button must be clicked to finish the order. The “Next
Order” button is then clicked to bring up a new order. Any
deviation from this procedure where a participant
attempted to work on an incorrect subgoal was recorded
as a sequence error; any time an error at the subgoal level
was made, the computer emitted a brief auditory tone to
alert the participant that an error was made. When a par-
ticipant committed an error the participant had to continue
with the task until the correct action was made.

The procedure described above was arbitrary, but par-
ticipants had no trouble learning it because (1) the informa-
tion that was needed to fill in the widgets was available on
the Navy Manifest and (2) the order of the widgets was
straightforward to remember due to a simple spatial rule,
which we provided to participants.

The interrupting task required participants to answer
addition problems with four single digit addends. During
the interruption, none of the primary-task display was
visible.

2.1.3. Design and procedure

Each order on the sea vessel task constituted a single
trial; participants performed twelve trials. Control and
interruption trials were manipulated in a within-partici-
pants design; half of the trials were control with no inter-
ruption and half were interruption trials with two
interruptions each. The order of trials was randomly gener-
ated. There were six predefined interruption points in the
sea vessel task. There was a potential interruption point
after clicking “ok” in each of the five widgets. The sixth
interruption point was after the “Process” button was
clicked. During the experiment there were a total of 12
interruptions (6 interruption trials � 2 interruptions in
each trial); each lasting 15 s. Participants were instructed
to answer as many addition problems as possible in this
time interval. The interruptions were equally distributed
among the six interruption locations. When the primary-
task display was reinstated after the interruption, there
were no visual cues on the task interface indicating where
to resume (i.e. no global place-keeping).

Before beginning the experiment, participants were given
instructions about the two tasks they were going to have to
perform and completed two trials as part of training; one
had no interruptions and one had two interruptions. Fol-
lowing these two training trials, participants had to perform
two consecutive randomly selected trials on their own with-
out making a sequence error before the participant could
begin the experiment; participants typically took two trials
to learn the task to criterion. Forcing participants to per-
form two consecutive error free trials was a method for
ensuring that participants were proficient at the task before
beginning the actual experiment. The experiment was self-
paced. A break was offered after six trials.

2.1.4. Description of errors

Perseveration errors were any actions that repeated an
action that had already been accomplished for that trial.



Fig. 1. Screenshot of the ship production task.
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Anticipation and omission errors were any actions that
skipped one or more steps. Because it was not possible to
actually omit a step, all skipped steps were categorized as
anticipation errors. Errors that occurred within a widget,
such as selecting the wrong material, were not analyzed.
Errors where participants failed to activate a particular
widget before attempting to work on the widget were not
analyzed; these are called device initialization errors (Cox
& Young, 2000) and are a different class of errors from
sequence errors that are considered to be task specific
and driven by the design of the interface.

2.1.5. Measures

Error rates were calculated for control and interruption
trials by calculating percentages (actual errors/total error
opportunities). Multiple incorrect actions in a sequence
were counted as a single error for the purposes of calculat-
ing error rates. Error actions that occurred less than 500 ms
from the previous action were excluded from all analyses as
they were taken to be inadvertent mouse clicks; this
accounted for less than one percent of the data.

2.2. Results and discussion

2.2.1. Comparing error rates

Of the fifteen participants, eleven participants made at
least one perseveration or anticipation error. To examine
the effect of interruptions on error rates, the error rate on
the step immediately after an interruption was compared
with the error rate on control trials using a repeated mea-
sures ANOVA. Participants made more errors immediately
following an interruption (M = 9.3%) compared to the
control (M = .9%), F(1, 14) = 5.8, MSE = 91.9, p < .05.
Participants rarely made errors in the control trials, sug-
gesting the task was well-learned. The non-zero error rate
on control trials also matches studies showing that people
do make errors on well-learned tasks (Reason, 1990).

2.2.2. Pattern of error actions

Next, we focused on the pattern of error actions. In
order to compare error actions at different points in the
task hierarchy, the error actions were coded relative to
the correct action at that point in the task hierarchy. Recall
that the correct order of actions was Vessel, Material, Paint
Scheme, Weapons, Location, Process and Complete Con-
tract. If the next correct action is to work on the “Weap-
ons” subtask and the participant made the error of
working on the “Paint” subtask, this error action was
coded as a “�1”. If instead the participant clicks the “Pro-
cess” button this was coded as a “2”. Based on this coding
scheme, a “�1” represents a repeat or perseveration of the
just completed action and a “1” represents a skip or an
anticipation of the next correct action. All errors were
coded using this scheme.

The distribution of error actions is illustrated in Fig. 2.
A visual inspection of this graph suggests that both persev-
eration and anticipation errors occur relatively frequently.
Additionally, the number of errors seems to be close to the
next correct action in both directions and graded away
from the correct step for perseveration errors. To deter-



Fig. 2. Distribution of errors during a sequential action task. Bars are
empirical data; circles are model fits. Error bars are 95% confidence
intervals.
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mine whether immediate perseveration errors (repeats)
were the most common error action, a repeated measures
ANOVA was conducted to compare error actions at this
position to all other error actions. There was a significant
difference among the different error positions,
F(7,70) = 12.8, MSE = 434.2, p < .0001. Tukey HSD post
hoc comparisons revealed that participants were signifi-
cantly more likely to make an immediate perseveration
error (M = 63.5%) than to make any other type of error
(all p’s < .05).

2.3. Model description

We developed a cognitive simulation of the MFG model
using the ACT-R 6.0 theory and simulation environment
(Anderson, 2007). ACT-R is a production system, with
each production representing a fine-grained unit of control
knowledge. On each system cycle, one production is
selected to “fire”, meaning do the work it represents, which
is often to manipulate the contents of a set of “buffers” that
collectively represent a kind of immediate memory or focus
of mental attention.

The model interacts with a software simulation of the
interface shown in Fig. 1. The model has perception and
visual attention productions that search for the widget
name associated with the current procedural step (e.g.,
“Vessel”). It also has motor productions that move the
mouse cursor to and press the “ok” button associated with
a given widget once processing for that step is complete.
The model did not perform the post-completion step
(Byrne & Bovair, 1997). When the model completed the
last procedural step, the model waited the same amount
of time that the post-completion step typically took (about
5 s) in order to simulate the time it took to perform that
step. Developing a post-completion model is clearly an
important component of this task and is currently under
progress.

The model has only a lean representation of the process-
ing that occurs during each procedural step. Human partic-
ipants, during a given step, have to enter various kinds of
information into the widget associated with that step, for
each of two different vessel types. For example, in the
Material step for the scenario in Fig. 1, the participant
would click the radio buttons for Lead and Iron, and select
Cruiser and Battleship in the corresponding Specification
boxes and the quantity needed. We assume that each of
these stages within a procedural step may involve retrieving
the control code. The model, having attended visually to
the widget for the current step, first creates the control code
for that step, then always performs exactly one retrieval of
the control code in the processing for that step. The control
code begins with a slightly higher than normal activation
(the strengthening constraint from Altmann & Trafton,
2002) so that it has a high enough activation to be retrieved
in the next step. Retrieval during uninterrupted perfor-
mance is also facilitated by the mental context through
activation spreading to the current control code from the
focus of attention (the priming constraint from Altmann
& Trafton, 2002); we assume that the mental context that
provides this priming is displaced by an interruption, so
is not available to facilitate retrieval at task resumption.
The environmental context could also prime the control
code, but that aspect is not implemented in the current
model, given that in this task environment there were no
relevant environmental cues on the primary-task display
after the interruption.

After the control code is retrieved, the final motor action
for that step is performed (pressing “ok” in that widget).
The model then transitions to the next step by using the
control code it retrieved on the previous step to index its
knowledge of the procedure. The model’s declarative
knowledge of the procedure is stored in ACT-R’s long-
term declarative memory, with each step being stored as
a “chunk” that points associatively to the chunk represent-
ing the next step. Eventually, this declarative knowledge
can turn into procedural knowledge, but this transition is
not represented in this model. For the present modeling
effort, we simply assume that knowledge of the procedure
is well-learned, to the point where each next step is accessi-
ble without error, and that the keeping-track mechanism
built on control codes is what reproduces the patterns in
the empirical data.

When an interruption occurs, the model detects the
change on the computer display. The effect of the interrup-
tion is to clear all information about the primary task from
the buffers representing the model’s mental context. The
model does not otherwise perform the interrupting task,
but simply “spins” until the primary-task display is rein-
stated, after 15 s. In this context, we assume that the inter-
rupting task itself does not impact the error rate.

To resume the primary task after the interruption, the
model tries to retrieve a control code. Sometimes this
retrieval will fail, under conditions described below, and
the model will guess a step. Most often the retrieval will
succeed, and the memory system will return a control code.
The model then interprets this code as the one representing
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the step it completed before the interruption, and uses it to
index its knowledge of the procedure to determine the next
step. Usually this interpretation will be correct, because the
most recent control code (1) will usually be most active,
because it is the least decayed and (2) will usually represent
a completed step, because interruptions are triggered when
the “ok” button is pressed, an action that signifies step
completion. Occasionally one condition or the other will
be violated, causing a sequence error. Activation noise
may cause an older control code to be transiently more
active than the most recent one and thus intrude on the
retrieval, which behaviorally will cause a perseveration
error. Variability in timing of internal events may mean
that the most recent control code does not correspond to
a completed step. Sometimes the motor command to press
“ok” will have been delayed relative to central processing,
such that, in the moments before the interruption is trig-
gered, central processing continues as usual, retrieving
the next procedural step and generating the associated con-
trol code. After the interruption, the most recent control
code will therefore be one that the system in a sense
intended to perform but then had to abort to respond to
the interruption. Such situations lead to anticipation
errors, where the model tries to skip the “intended” step.

Several model parameters interact to affect the behavior
described above, all of them affecting activation dynamics.
One is activation noise (ACT-R parameter: ans, set to .03),
which governs the variance of the zero-mean logistic noise
distribution sampled for the activation of each control code
on each system cycle. A second parameter is the decay rate
(ACT-R parameter: bll, set to the default value 0.5). A
third parameter is priming (ACT-R’s: mas parameter set
to 3) which provides contextual priming to help retrieve
the relevant control code.

To reproduce the empirical data, we ran 100 simulated
trials. The fits are shown in Fig. 1 (circle markers).

2.3.1. Model fit
As is evident in Fig. 2, the model matches the data quite

well; R2 = .99 and RMSD = 1.9. The model captures the
pattern in the data that perseveration errors occur more
frequently than anticipation errors and that perseveration
errors show a graded pattern away from the correct step.
Note that the model does not predict anticipation errors
beyond the first step (e.g., +1). The model suggests that
any anticipation errors beyond the first step (e.g., +2,
+3, etc.) are due to the model’s failure to be able to retrieve
any control code and guessing or retrieving a previous
trial’s control code. This latter possibility is actually a per-
severation error being manifested as an anticipation error.

2.4. Summary

The MFG model showed an excellent fit to the experi-
mental data. However, as with all model fitting paradigms,
it is possible that the model will not generalize to other sit-
uations because the cognitive processes, parameters, partic-
ipants, or experimental task may be idiosyncratic. To
explore this possibility, a second task was developed. If
the different participants and new task qualitatively repli-
cates the sequence error findings, we assume data is robust
and replicable. Additionally, if the existing model can
quantitatively fit the new task data, we assume that our
model accurately describes the cognitive processes involved
in sequence errors.

3. Experiment 2

This experiment used a different and much better inter-
face from Experiment 1.1

3.1. Method

3.1.1. Participants

Thirty-six George Mason University undergraduate stu-
dents, participated for course credit.

3.1.2. Task and materials

Participants performed a computer-based procedural
task as the primary task and, similar to Experiment 1, par-
ticipants were periodically interrupted by a secondary task.
The primary task was a complex financial management
task. The goal of the task was to successfully fill client’s
orders for different types of stocks. The orders were to
either buy or sell and were presented four at a time at the
top of the screen (see Fig. 3). The current prices of the
stocks associated with the orders were presented in the cen-
ter of the screen in the Stock Information column. The
actual stock prices fluctuated every 45 s (see Fig. 3).

To complete an order, participants first had to deter-
mine which of the client orders could currently be executed
by comparing the client’s requested price to the actual mar-
ket price of the stock from the Stock Information column.
If the client’s order is to buy a stock, the current stock price
must be equal to or less than the requested buy price for the
order to be executable. If the client’s order is to sell a stock,
the current stock price must be equal to or greater than the
requested sell price for the order to be executable. Once an
order was determined to be executable, the participant
clicked the Start Order button for the respective order.
To actually fill the order, the participant had to enter
details from the order itself and the Stock Information col-
umn into eight different widgets on the screen. Participants
had to follow a specific procedure to complete the order;
the specific sequence was: Quantity, Cost, Order Info, Mar-
gin, Stock Exchanges, Transaction, Stock Info, and
Review. Overall, the financial management task has a con-
siderably better interface compared to the sea vessel task.
In particular, the spatial layout of the interface (working
from top to bottom down the left column and then the



Fig. 3. Screenshot of the financial management task.

Fig. 4. Distribution of errors during the financial planning task. Bars are
empirical data; circles are model fits. Error bars are 95% confidence
intervals.
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right column of Fig. 3) and the operations required to per-
form the task are quite intuitive. After entering informa-
tion in each widget, the participant clicked the Confirm

button and could then move on to the next widget. After
clicking confirm on the final widget (the Review widget),
a pop-up window appeared confirming the details of the
order. The participant then had to acknowledge the win-
dow by clicking Ok. Finally, to complete the order the par-
ticipant clicked the Complete Order button (upper right
corner).

Similar to Experiment 1, if a participant deviated from
the strict procedure, the computer emitted a beep signifying
that an error had been made and the participant had to
continue working until the correct action was completed.
No information remained on the interface after entering
information in the widgets (i.e. no global place-keeping,
Gray, 2000).

The interrupting task was the same as Experiment 1 with
the exception that participants were presented with five
possible solutions (4 incorrect, 1 correct) and had to click
on the button associated with the correct solution.
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3.1.3. Design and procedure

The completion of one order on the financial manage-
ment task constituted a trial. The design of control and
interruption trials was the same as Experiment 1, except
that there were eight possible interruption points in the
financial management task. These points occurred after
clicking the Confirm button following the first seven wid-
gets and after acknowledging the false completion signal,
just prior to the post-completion action. The location of
the interruptions on a trial by trial basis was randomized
with the constraint that exactly two interruptions occurred
just prior to the post-completion step and at least one inter-
ruption occurred at each of the other seven possible loca-
tions. The interruption itself lasted for fifteen seconds.

The procedure was the same as Experiment 1.

3.1.4. Measures

Data collection, error coding, and the calculation of
error rates were the same as Experiment 1.

3.2. Results and discussion

3.2.1. Comparing error rates

Of the 36 participants, 32 participants made at least one
perseveration or anticipation error. Error rates were com-
pared between the control trials and actions immediately
after the interruption using a repeated measures ANOVA.
Participants made more errors following an interruption
(M = 6.7%) compared to the control (M = .3%),
F(1, 35) = 45.8, MSE = 16.2, p < .05. Participants rarely
made errors in the control trials, suggesting the task was
well-learned.

3.2.2. Pattern of error actions

Next, we focused on the pattern of error actions. As in
Experiment 1, the error actions were coded relative to the
correct action at that point in the task hierarchy.

The distribution of error actions is illustrated in Fig. 4.
The pattern of results on the financial task is remarkably sim-
ilar to the results of the Sea Vessel task. As in Experiment 1,
perseveration errors were the most common error action,
F(11, 341) = 35.4, MSE = 286, p < .0001. Tukey HSD post
hoc comparisons revealed that participants were signifi-
cantly more likely to make an immediate perseveration error
(M = 60.6%) than to make any other type of error (all
p’s < .05).

3.3. Model results

The model was not re-designed for the financial manage-
ment task or re-run for the new dataset. Rather, the model
results from Experiment 1 were simply copied over to the
new dataset. As Fig. 4 suggests, the model fits at both a
qualitative level (R2 = .98) and a quantitative level
(RMSD = 2.3). The qualitative result strongly suggests
that the sequence error findings are robust and replicable.
The strong quantitative fit suggests that MFG model accu-
rately describes the cognitive processes involved in
sequence errors at the subtask level.

3.4. General discussion

The current paper presents two experiments and a novel
model of sequential actions. Both experiments used an
interruption paradigm, increasing the rate of errors enough
to see emergent patterns from the data. The model used a
memory for goals model that describes the process people
go through both during error-free behavior and when they
make errors. In general, errors occurred because the wrong
episodic memory was retrieved. Perseveration errors
occurred because a recent episodic memory had a high
enough activation that, with noise, was retrieved instead
of the correct memory. Anticipation errors occurred
because the communication between the preparation and
execution of an action gets disrupted for some reason.

The MFG model presented here connects with previous
MFG models, showing an overall coherence with different
tasks and measures. The original MFG model focused on
the strengthening constraint, the priming constraint, and
the interference level. The current MFG model uses these
three constructs as well. The strengthening constraint is
necessary because if an episodic trace does not start with
a slightly higher activation, it can be very difficult to
retrieve even a short period of time later. The priming con-
straint is used in the current model to help the retrieval of
the episodic code given the current mental context. The
interference level is critical to the model because it is the
main determinant of perseveration errors, since the proba-
bility of making an error increases when the noise is high,
which increases the chance that another (incorrect) episodic
code will be retrieved.

The current MFG model connects less well with our pre-
vious model of recovery from task interruptions, which
focused on the costs of recovery measured in terms of time
rather than errors (Altmann & Trafton, 2007). In that
study, we found that times between task-related actions
returned asymptotically to baseline after an interruption,
rather than abruptly. In our model there, we assumed that
task resumption after interruption involved reconstructing
an episodic representation of the current state of the inter-
rupted task, and that this reconstruction process was
affected by a kind of feedforward priming as each addi-
tional state element was retrieved. There is some possibility
that the mechanisms underlying the temporal gradient in
that data set and the sequence error gradients presented
here (Fig. 2, especially the anticipation errors) are related.
More generally, however, we would like to understand how
the state-reconstruction process we proposed there might
relate to the fine-grained control codes we propose here,
as we work toward a more complete understanding of
how the system recovers after performance of a relatively
complex task is interrupted.

The MFG model shares both similarities and differences
to the other two models of sequential routine action, IAN
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and SRN. MFG focuses on perceptual and memorial pro-
cesses rather than schemas (IAN) or distributed representa-
tions (SRN). However, it is interesting that all three models
use noise as one of the primary explanatory constructs for
why errors are made.

The current MFG model does have several limitations.
First, it only accounts for sequence errors; it does not
account for intrusions, capture errors, etc. Second, while
both IAN and SRN attempt to model both normal and
patient populations, the MFG model only addresses nor-
mally functioning individuals. Third, the model-task is
quite simple, and a more complete task description is
needed to expand the coverage of this model. Finally,
the MFG model does not model the learning of the task
itself.

The experiments reported here and the MFG model
itself do, however, have several strengths. First, the exper-
imental paradigm used here allows errors to be studied in
the lab with normal populations. This data and other like
it should be able to constrain current models of sequential
actions, as Botvinick and Plaut (2006) suggest. Second, the
MFG makes both qualitative and quantitative predictions
about the error pattern for this task. Both the IAN and
SRN models have been critiqued for the way they make
perseveration errors. Finally, the model makes episodic
memory an aspect of its normal processing, so errors arise
out of normal processing of routine behavior.
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