NAVAL RESEARCH LABORATORY
Washington, DC 20375-5320
NRL/MR/6410-93-7192

LCPFCT — Flux-Corrected Transport
Algorithm for Solving Generalized
Continuity Equations

JAY P. BORIS

ALEXANDRA M. LANDSBERG
ELAINE S. ORAN

JOHN H. GARDNER

Laboratory for Computational Physics and Fluid Dynamics

April 16, 1993

Approved for public relase; distribution unlimited.

LCPFCT -
A Flux-Corrected Transport Algorithm

for Solving Generalized Continuity Equations

Jay P. Boris, Alexandra M. Landsberg, Elaine S. Oran and John H. Gardner
Laboratory for Computational Physics and Fluid Dynamics
U.S. Naval Research Laboratory, Washington DC

ABSTRACT

Flux-Corrected Transport has proven to be an accurate and easy to use algorithm to solve
nonlinear, time-dependent continuity equations of the type which occur in fluid dynamics,
reactive, multiphase, and elastic plastic flows, plasma dynamics, and magnetohydrody-
namics. This report updates and supersedes a previous report entitled “Flux-Corrected
Transport Modules for Solving Generalized Continuity Equations.” It can be used as a
user manual for the subroutines and test programs included in the appendices. The entire
LCPFCT library in its most recent form is presented and discussed in detail. There are, in
addition, discussions of more general topics such as the application of physical boundary
conditions, physical positivity and numerical diffusion which help to put the numerical
aspects of this subroutine library in context.

i

TABLE OF CONTENTS

1. Introduction |
2. Numerical Background . 3
2.1 Positivity and Accuracy . 3
2.2 Principles of Flux-Corrected Transport 7
3. The LCPFCT Algorithm13
4. Split Step Applications of Monotone FCT Algorithms20
4.1 One-Dimensional Solutions of the Coupled Equations20
4.2 Multidimensions through Timestep Splitting21
5. How To Use LCPFCT 5%
5.1 LCPFCT Variables in Common O 245)
5.2 Subroutines in LCPFCT28
5.3 Typical Calling Sequences . . . -
5.4 Summary of the Major LCPFCT lerary Routmes e ()
6. Boundary Conditions . . . T § |
6.1 Representation of Boundary Cond1t1ons in LCPFCT R)
6.2 Boundary Conditions for Confined Domains44
6.3 Continuitive Boundary Conditions for Unconfined Domains 50
7. Additional Informationb6
8. Test Problems . . . 10
8.1 Constant Velomty Convectlon - LCPFCT Test # 1 Coe e .. 60
8.2 Progressing One Dimensional Gasdynamic Shock — LCPFCT Test # 2 .. 64
8.3 One-Dimensional Bursting Diaphragm Problem — LCPFCT Test # 3 . . . 66
8.4 Two-Dimensional Muzzle Flash Problem — LCPFCT Test #4 69
9. Summary s T2
Acknowledgements L T3
References, T4
Appendices
A. Listing of LCPFCT Library Subroutines Al-A20
B. Listing of Convection Test and Printed ResultsB1- B7
C. Listing of Progressing Shock Program and Printed Results C1- Q9
D. Listing of Bursting Diaphragm Program and Results D1 - DI1
E. Listing of Two Dimensional FAST2D Program and Results E1 - ES8

iii

1. INTRODUCTION

This report explains and documents a group of subroutines for solving generalized conti-
nuity equations of the form

o 1

_ g(ro‘_l 1 0 0D
ot re—1 or

_ ~ a—1
o) = oy (1 D1) + Cag =+ Dy (1.1)

These subroutines, collectively referred to by the name of the main program, LCPFCT,
use one of the latest one-dimensional Flux-Corrected Transport (FCT) algorithms with
fourth-order phase accuracy and minimum residual diffusion. The program loops vectorize
to take full advantage of vector architectures and run equally well on scalar and superscalar
computers. The use of internal temporary memory is quite minimal, limited to about
thiry short one-dimensional arrays, and is arranged to maximize readability and efficient
program execution. A rather general capability to handle the source terms in Eq. (1) has
been provided so that coupled sets of multidimensional nonlinear continuity equations,
such as those for ideal compressible fluid dynamics and reactive flows, can be solved using
the routines presented here.

LCPFCT itself can treat one-dimensional, Cartesian, cylindrical, or spherical , and
generalized nozzle coordinates. A flexible set of boundary conditions for each equation can
be selected by the appropriate choice of the arguments to the subroutine calls. In addition
to inflow, outflow, and reflecting wall conditions in several coordinate systems, there is an
option for periodic boundary conditions. Using this version of LCPFCT, multidimensional
problems may be solved by timestep-splitting techniques. The computational grid can be
nonuniform and, in addition, can move during the course of a timestep, enabling us to do
Lagrangian and sliding rezone calculations. The programs produce a positive, conservative
interpolation when the fluid velocity is zero but the grid moves, which is an important test
of the gridding.

The important properties of FCT are that it is a high-order, monotone, conservative,
positivity preserving algorithm. This means that the algorithm is accurate and resolves
steep gradients, allowing grid scale numerical resolution. When a convected quantity such
as a density is initially positive, it remains positive and no new maxima or minima are
introduced due to numerical errors in the convection process. These are properties that are
extremely important for most problems of practical interest. Table 1 presents an overview
of FCT algorithm developments. More background, description, and historical material
may be found in Boris (1971), Boris and Book (1976), Book and Boris (1981), and Oran
and Boris (1987).

The material presented here is an update and expansion of the ETBFCT programs
described by Boris (1976). There are several fundamental differences between LCPFCT

1

Table 1.1 History of Development of FCT Algorithms

1971 Basic nonlinear, monotone algorithm (Boris)
1976 Adaptation of FCT to general finite-difference algorithms (Boris and Book)
1976 Optimization for vector and parallel processing (Boris)
1979 Fully multidimensional FCT and generalization to use with
arbitrary high- and low-order algorithms (Zalesak)
1985 Finite-Element FCT on triangle-based grids (Lohner)
1986 Tmplicit FCT (Patnaik)
1991 Arbitrary nonorthogonal FCT (Fyfe and Patnaik)
1992 General curved boundary FCT (Landsberg and Boris)

and ETBFCT. First, in LCPFCT, variables are defined on cell centers instead of cell
vertices, a relatively small change. Second, ETBFCT was written as a single subprogram,
with a number of entries whereas LCPFCT is a series of independent subroutines which
communicate through named common blocks. Finally, additional subroutines have been
added to increase the flexibility and ease of using LCPFCT.

LCPFCT is written in Fortran. Complete program listings and four test programs are
given in the appendices. Appendix A contains a complete listing of the series of subrou-
tines which in their entirety constitute LCPFCT. Appendix B contains a constant velocity
convection test problem, LCPFCT Test #1, with the driver program and sample results
in tabulated form that can be used to check the code. Appendix C contains a progressing
shock test problem, LCPFCT Test #2, and selected outputs for comparison. Appendix C
also has an interface program called GASDYN which combines the calls to source generat-
ing routines, velocity and boundary condition routines, and the basic continuity equation
module LCPFCT. GASDYN couples the set of nonlinear continuity equations to solve
gasdynamics one row at a time and is used in LCPFCT Tests #2, #3, and #4. Appendix
D contains the program and selected outputs for the one-dimensional bursting diaphragm
problem, LCPFCT Test #3. This example illustrates the variable grid features of the
LCPFCT routines by switching into an expanding system of grid coordinates to capture
the expected similarity solution. Appendix E contains a two-dimensional “muzzle flash”
test problem, LCPFCT Test #4, with sample output that can be used to verify the users
version of the code. This fourth test illustrates the use of simple outflow boundary condi-
tions and shows how to construct programs with relatively complex geometries.

2. NUMERICAL BACKGROUND

2.1 Positivity and Accuracy

Good resolution of steep gradients is important in many problems we need to solve. It is
important in reactive flows, where the gradients at detonation fronts, flame fronts, and at
interfaces in multiphase flows must be accurately represented. Flame speeds depend on
steep species gradients, as do the local energy release profiles. It is important in simulations
of shocks, particularly when they collide or interact with other steep gradients. High
resolution of shear flows is also very important since vortex stretching and shear steepening
both produce steep local gradients in the flow.

Positivity is a property satisfied by the continuity equation. When the density p(r,t)
in Eq. (1.1) is everywhere positive and the source terms are zero, it is a mathematical
consequence of the continuity equation and an obvious physical property of the flow that
the density can never become negative anywhere — regardless of the velocity field specified.
To retain this mathematical and physical property in numerical convection through an
Eulerian grid involves a certain amount of numerical diffusion. This numerical diffusion
arises as a consequence of the physical requirements that the profiles being convected
remain stable while remaining positive. Numerical diffusion is an inherent problem in
Eulerian convection, and unless controlled, it can invalidate numerical calculations using
linear algorithms unless they have very fine computational meshes.

Figure 2.1 shows how numerical diffusion enters the first-order upwind algorithm (see,
for example, Oran and Boris, 1987). Consider a discontinuity, at x = 0 at time ¢t = 0, that
moves at a constant velocity from left to right. The velocity, v, the timestep, At, and the
computational cell size, Ax, are chosen such that vAt/Ax = 1/3 in the figure. This means
that the actual physical discontinuity travels one third of a cell per timestep. The solution
obtained using the linear upwind algorithm (sometimes called donor-cell) is given by the
solid line. The “upwind” finite-difference formula is a simple linear interpolation

vAt
pitt = plr — A, Py (2.1)

If the {p;} are positive at some time ¢ = n At and

vAt

— <1 2.2

Az | — (22)
in each cell, the new density values {p/"'} at time ¢t = (n 4+ 1)At are also positive. The

price for guaranteed positivity in this linear algorithm is a severe nonphysical spreading of
the discontinuity which should be located at x = vt.

3

t=0At

- - - > -
t=1At
===1
; * * —p

t=2At

-AX X=0 AX 2AX 3AX 4AX

Figure 2.1 The results of convecting a discontinuity with the highly diffusive, first order
upwind algorithm. The velocity is 1/3 of a cell per timestep. The solid lines are the exact
profile, which coincides with the numerical solution at ¢ = 0. The heavy dashed line is the
numerical solution. Note the diffusive precursor moves at once cell per timestep regardless
of the speed of the flow.

In the example shown in Figure 2.1, the initial discontinuity erodes rapidly. This
process looks like physical diffusion, but it arises here from numerical errors. The numerical
diffusion occurs because material that has just entered a cell, and should still be near the
left boundary, is smeared over the whole cell when the transported fluid elements are
interpolated linearly back onto the Eulerian grid. Higher-order approximations to the
convective derivatives are required to reduce this diffusion.

Now consider a three-point explicit finite-difference formula for advancing {p!'} one
timestep to {pf "1},

p?'H = a;p;_1 +bip] + Cz‘P?Jrl : (2:3)

This general form includes the first-order upwind algorithm and other common algorithms.

4

If Ax and At are constants, Eq. (2.3) can be rewritten in a form that guarantees conser-

vation,
1
it =) = S lea (ol + 7)) — eimy (oF + p1)] (2.4
+ [Vi+§(/)?+1 —pi) — Vi—%(ﬁ? - P?—l)])
where A

The {v;, 1 } are nondimensional numerical diffusion coefficients which appear as a conse-
quence of considering adjacent grid points. Conservation of p in Eq. (2.4) also constrains
the coefficients a;, b;, and ¢; in Eq. (2.3) by the condition

ai+1+bi+ci1=1. (26)

Positivity of {p"T1} for all possible positive profiles {p'} requires that {a;}, {b;}, and {c;}
be positive for all 7.

Matching corresponding terms in Egs. (2.4) and (2.3) gives

1
a; = Vz—%—’_iez—% ,
1 1
bi = 1 — 5624—% + 567:_% — Vi—f—% — Vi_% y (27)
B 1

If the {v, 1 } are positive and large enough, they ensure that the {p]'"'} are positive. The
positivity conditions derived from Egs. (2.7) are

|€i+%| <

1
2 =V

(2.8)

AV DN =

+3

for all 5. Thus the condition in Eq. (2.8) for positivity leads directly to numerical diffusion
in addition to the desired convection,

n—+1
Pt = pi + V¢+%(P?+1 —pi) =V

+ convection ,

(0 = i) (2.9)

where Eq. (2.8) holds. This first-order numerical diffusion rapidly smears a sharp discon-
tinuity. Godunov has shown rather generally that linear second-order algorithms cannot

5

uphold physical positivity. If algorithms are used with v; 1 < %|el +1 |, positivity is not
necessarily destroyed but can no longer be guaranteed. In practice, the positivity condi-
tions are almost always violated by strong shocks and discontinuities unless the inequal-
ities stated in Eq. (2.8) hold. Nevertheless, the numerical diffusion implied by Eq. (2.8)
is unacceptable. The diffusion coefficient {v; 1 } cannot be zero, however, because the
explicit three-point formula, Eq. (2.4), is subject to a numerical stability problem if it is
zero. Finite-difference methods which are higher than first order, such as the Lax-Wendroff
(1964) methods, reduce the numerical diffusion but sacrifice assured positivity. This appar-
ent dilemma can only be resolved by using a nonlinear method to integrate the continuity
equations.

To examine the problem of stability and positivity, we consider a stability analysis.
Consider convecting test functions of the form

pi = ppe, (2.10)

where
21 Az

A 9
and i indicates v/—1. Substituting this solution into Eq. (2.4) gives

8 =kAz = (2.11)

Pttt = pl[1—2v(1 — cos B) —iesinB] , (2.12)

where we assume that
{Vi—&—%} =V

(2.13)
{€i+%} = €.
The exact theoretical solution to this linear problem is
P2+1|exact = pge_ikvAt . (2.14)

Therefore the difference between the exact solution and Eq. (2.12) is the numerical error
generated at each timestep.

The amplification factor was defined as

n+1

p
A= —2— (2.15)
Ps
and an algorithm is always linearly stable if
A2 < 1. (2.16)

6

From Eq. (2.12),
|A? = 1— (4v —2€*)(1 — cos B) + (4v* — €*)(1 — cos B)? , (2.17)

which ought to be less than unity for all permissible values of 3 between 0 and 7. In general,
v > %62 ensures stability of the linear convection algorithm for any Fourier harmonic of
the disturbance, provided that At is chosen so that |¢| < 1. This stability condition is a
factor of two less stringent than the positivity conditions |e] < 3. When v > 1, there are
combinations of € and 8 where |A|? > 1, for example € = 0 with 8 = 7. Thus the range of
acceptable diffusion coefficients is quite closely prescribed,

1 1
> vz §’€| = 562' (2.18)

N —

Even the minimal numerial diffusion required for linear stability, v = %62, may be
substantial when compared to the physically correct diffusion effects such as thermal con-
duction, molecular diffusion, or viscosity. Figure 2.2 shows the first few timesteps from the
same test problem as in Figure 2.1, but using v = %62 rather than v = %e required for pos-
itivity. The profile spreads only one third as much as in the previous case where positivity
was assured linearly, but a numerical precursor still reaches two cells beyond the correct
discontinuity location. Furthermore, the overshoot between z = —Az and x = 0 in Fig-
ure 2.2 is a consequence of underdamping the solution. The loss of monotonicity indicated
by the overshoot can be as bad as violating positivity. A new, nonphysical maximum in
p has been introduced into the solution. When the convection algorithm is stable but not
positive, the numerical diffusion is not large enough to mask either numerical dispersion or
the Gibbs phenomenon arising near sharp gradients so the solution is no longer necessarily

monotone. New ripples, that is, new maxima or minima, are introduced numerically.

2.2 Principles of Flux-Corrected Transport

From the discussion above and the work of Godunov (1959), the requirements of positivity
and accuracy seem to be mutually exclusive. Nonlinear monotone methods were invented
to circumvent this dilemma. These methods use the stabilizing v = %.52 diffusion where
monotonicity is not threatened, and increase v to values approaching v = %|e| when re-
quired to assure that the solution remains monotone. Different criteria are imposed in
the same timestep at different locations on the computational grid according to the local
profiles of the physical solution. The dependence of the local smoothing coefficients v on
the solution profile makes the overall algorithm nonlinear.

To prevent negative values of p which could arise from dispersion or Gibbs errors, a
minimum amount of numerical diffusion must be added to assure positivity and stability

7

t=0At

-—
t=1At
— >
t=2At
— >
t=2At
>

-AX X=0 AX 2AX 3AX 4AX

Figure 2.2 Results of convecting a discontinuity using an algorithm with enough diffusion
to maintain stability, but not enough to hide the effects of dispersion. Note the growing
nonphysical overshoot behind the actual discontinuity and the diffusive numerical precursor
at times after ¢ = 0 in the numerical solution (heavy dashed line).

at each timestep. We write this minimal diffusion as

el
2

|

(c+ e]) (2.19)

where ¢ is a clipping factor, 0 < ¢ < 1 — |¢|, that controls how much extra diffusion must
be added to ensure positivity over that required for stability, €2/2. In the vicinity of steep
discontinuities, ¢ ~ 1 — |¢|, and in smooth regions away from local maxima and minima,
c~0.

Over the last 20 years, monotone algorithms have been shown to be a reliable, robust
way to calculate convection. The first specifically monotone, positivity-preserving tech-
nique was the Flux-Corrected Transport (FCT) algorithm developed at NRL, as discussed,

8

for example, in Boris (1971) and Boris and Book (1973, 1976). Other early monotone meth-
ods employing nonlinear flux limiters were proposed by van Leer (1973, 1979), and Harten
(1974, 1983). There has been extensive work on monotone methods during the last ten
years, some of which is described in the following references, Colella and Woodward (1984)
and Woodward and Colella (1984), Baer (1986), and Rood (1987). A characteristic of
these methods generally distinguishing them from FCT is their use of a Riemann solver
to determine the fluxes of mass momentum and energy for gas dynamics. Their use of
nonlinear limiting formulae on these fluxes to calculate the clipping factor ¢ above, is very
much like FCT. Research on monotone methods related to the FCT approach without a
Reiman solver has also continued to the present, for example by Odstrcil (1990), Leonard
and Niknafs (1990), Nessyahu and Tadmor (1990), and Lafon and Osher (1992). Zalesak
(1979, 1981), Lohner (1987), Patnaik, et al. (1987), DeVore (1989, 1991), Fyfe and Patnaik
(1991), and Landsberg and Boris (1992) have developed various generalizations and modi-
fications of FCT designed to improve its performance in multidimensions and to represent
complex geometry.

We now rewrite the explicit three-point approximation to the continuity equation
given in Eq. (2.3) to determine provisional values, {p;}, from the previous timestep or
“old” values, {p°,},

pi = aipi_1 +bipf +cipiyy - (2.20)

Again, Eq. (2.6) must be satisfied for conservation and {a;}, {b;}, and {¢;} must all be
greater than or equal to zero to assure positivity.

Equation (2.20), in conservative form, again becomes

5 1
pi = pi — B [€¢+%(P§)+1 +p7) — ﬁz‘—é(/’? + 07 1)]

+ Vi1 (0f1 — 0f) — vi_1(p? = pe_1)] (2.21)

o 1
= P — E[fi—% _fi—i—%} :

The values of variables at interface ¢ + % are averages (possibly unequally weighted) of
values at cells ¢ + 1 and ¢, and the values at i — % are averages of values at cells ¢ and
i — 1. At every cell 4, the p; differs from p{ as a result of the inflow and outflow fluxes of
p, denoted by { fz-i% } across the cell boundaries. The fluxes are successively added and
subtracted along the array of densities {p?} so that the overall conservation of p is satisfied
by construction. Summing all the provisional densities gives the sum of the old densities.

The expressions involving €41 are called the convective fluxes.

By comparing Eq. (2.21) and (2.20), we obtain the conditions relating the a, b, and ¢’s
to the €’s and v’s, essentially as in Eq. (2.7). In Eq. (2.21), the {v; 1} are dimensionless

9

diffusion coefficients included to ensure positivity of the provisional values {p;}. The
positivity condition for the provisional {p;} is given in Eq. (2.8).

However, after Eq. (2.20) is imposed, two of the three coefficients in Eq. (2.21) are still
to be determined. One of these sets of coefficients must ensure an accurate representation

of the mass flux terms. Thus AL

Cird = Vied AL (2.22)

where, {v, +%} is the fluid velocity approximated at the cell interfaces. The other set of
coefficients, {v; 1 }, are chosen to maintain positivity and stability.

The provisional values p; must be strongly diffused to ensure positivity. If v, 1=

e +1| in Eq. (2.8), we have the diffusive, first-order upwind algorithm. A correction in
FCT to remove this strong diffusion involves an additional antidiffusion stage,

pi = Pi— Wiy 2 (Piv1 — Pi) + i1 (Pi — pi-1) , (2.23)

in the algorithm to get the new values of {p}'}. Here {y; 1} are positive antidiffusion
coefficients. Antidiffusion reduces the strong diffusion implied by Eq. (2.8), but also rein-
troduces the possibility of negative values or nonphysical overshoots in the “corrected”
profile. If the values of {y;, 1} are too large, the new solution {pj'} will be unstable
numerically.

To obtain a positivity-preserving algorithm, we modify the antidiffusive fluxes in
Eq. (2.23) by a process that we call flux correction. The antidiffusive fluxes,
fﬁ% = pirt (Pit1 = pi) (2.24)
appearing in Eq. (2.23) are corrected (limited) as described below to ensure positivity and
stability.

The biggest choice of the antidiffusion coefficients {u; 1 } that still guarantees posi-

tivity linearly is
1
Pird & Vipr =5 levl (2.25)

However, this is not large enough. To reduce the residual diffusion (v — p) even further,
the flux correction must be nonlinear, depending on the actual values of the density profile
{pi}.

The idea behind the nonlinear flux-correction formula is as follows: Suppose the den-

sity p; at grid point ¢ reaches zero while its neighbors are positive. Then the second
derivative is locally positive and any antidiffusion would force the minimum density value

10

pi = 0 to be negative. Because this cannot be allowed on physical grounds, the antidiffusive
fluxes should be limited so minima in the profile are made no deeper by the antidiffusive
stage of Eq. (2.23). Because the continuity equation is linear, we could equally well solve
for {—pl'}. Hence, we also must require that antidiffusion not make the maxima in the
profile any larger. These two conditions form the basis for FCT and a central role in other
monotone methods. The antidiffusion stage should not generate new maxima or minima
in the solution, nor accentuate already existing extrema.

This qualitative idea of a nonlinear filtering can be quantified. The new values {p}'}
are given by

pi = P~ [ty (2.26)

1
2

where the corrected fluxes {f7, , } satisfy
2

R
(¢}
Il

‘s S-max{(), min [S (52— fira)s £ S (7 —ﬁi_l)}} . (2.27)

Here |S| =1 and sign S = sign (p;+1 — pi)-

To see what this flux-correction formula does, assume that (p;4+1 — p;) is greater than
zero. Then Eq. (2.27) gives either

f+% = min [(ﬁz’+2 — Pit1), Mi—f—%(ﬁi-i—l — pi), (P — /31'—1)} or

. (2.28)

C
: 1
’L+§

whichever is larger. The “raw” antidiffusive flux, fff; given in Eq. (2.24), always tends
2

to decrease p;’ and to increase p}, ;. The flux-limiting formula ensures that the corrected
flux cannot push p}* below p;* |, which would produce a new minimum, or push p;* ; above
Piy o, which would produce a new maximum. Equation (2.27) is constructed to take care
of all cases of sign and slope.

The formulation of an FCT transport algorithm therefore consists of the following
four sequential stages:

1. Compute the transported and diffused values p; from Eq. (2.21), where the v, 1>

%\ei +%| to satisfy monotonicity. Add in any additional source terms, for example,
—-VP.

2. Compute the raw antidiffusive fluxes from Eq. (2.24).
3. Correct or limit these fluxes using Eq. (2.27) to assure monotonicity.

4. Perform the indicated antidiffusive correction through Eq. (2.26).

11

Stages 3 and 4 are the new components introduced by FCT. There are many modifications
of this prescription that accentuate various properties of the solution. Some of these are
summarized in Boris and Book (1976), by Zalesak (1979, 1981), and more recently in Book,

et al. (1991).

12

3. THE LCPFCT ALGORITHM

We now discuss the program LCPFCT, implemented as a Fortran subroutine for solving the
continuity equation. LCPFCT is used in combination with calls to a number of auxiliary
subroutines for defining the computational grid, the velocity dependent factors, the various
source terms in the equations being solved, and the boundary conditions. This is an
updated version of the program ETBFCT (Boris, 1976) and is available on request. The
programs are short and complete program listings also appear in the appendices.

LCPFCT implements an explicit solution of the general one-dimensional continuity
equation, Eq. 1.1, which is reprinted just below,

ap 1

19 ., 1D oD,
ot ra-l 67“(T pv)

ra—lg(ra_lDl)—i_CbW +D3 (11)

The current implementation includes provisions for a spatially variable and moving grid.
Additional source terms are included by means of the terms Dy, Dy, and D3. Different
one-dimensional geometries may be selected through variation of an input integer o where
a = 1 is Cartesian or planar geometry, o = 2 is cylindrical geometry, and @ = 3 is
spherical geometry. By choosing a = 4 and writing problem-specific code defining cell
interface areas and volumes, the user can define other useful coordinate systems such as
elliptical coordinates or various nozzle geometries.

Figure 3.1 shows a one-dimensional geometry in which the fluid is constrained to move
along a tube. The one dimensionality is based on the assumption that the fluid variables
vary very little in the direction perpendicular to the axis of the tube. The variable r
measures distance along the tube. The velocity v/ is the fluid velocity along . The points
at the interfaces between cells are the finite-difference grid points. The interface positions
at the beginning of a numerical timestep are denoted by {r&_% }, wherei =0, 1, ..., N.

At the end of a timestep At, the interfaces are at {TZT:L ; }, where
2

_ g
T;L+% = T?Jr% +U’i—|—% At, (31)

The quantities {vf +1 } are the grid velocities, the average velocities of the cell interfaces
during the interval At¢. Figure 3.1 also indicates the basic cell volumes {A;}, and the
interface areas, {4, ! }. The interface areas are assumed to be perpendicular to the tube
and hence to the velocities {sz 1 }. The change in the total amount of a convected quantity

in a cell is the algebraic sum of the fluxes of that quantity into and out of the cell through
the interfaces. Both the cell volumes {A;} and the interface areas {4;,1} that bound the
cells have to be calculated consistently using new and old grid positions.

13

r1/2

Figure 3.1 Geometry and layout of the LCPFCT finite volume grid. Physical variables are
specified as cell averages in the volumes defined by the locations of the interfaces between
cells and the variation of the cross-sectional area with distance between the interfaces.

The positions of the cell centers are denoted {r;""} and may be related to the cell
interface locations by
1 o,n o,n .
=g [TH’_% —I—ri’_%] , i =12, N. (3.2)
The superscripts o or n indicates the old and new grid at the beginning and the end of
the timestep. The cell centers could also be computed as some weighted average of the
interface locations. These locations, r}' and 7 are not needed for gasdynamics but may be
useful for calculating diffusion terms added to Eq. (1.1). The boundary interface positions,
ro™ and T?\}Z—l’ have to be specified by the user. For example, they might be the location of
b?)unding Wafls. Then by programming r 1asa function of time and forcing the adjacent
grid points to move correspondingly, one can simulate the effect of a piston or flexible
container.

To calculate convective transport, the first term on the right hand side of Eq. (1.1),

o n
irl O

timestep. The velocities of the fluid are assumed known at the cell centers and the velocity

we need the flux of fluid through each interface as it moves from r during a

14

of the fluid at the interfaces is given by

1 .
vg;% = §(vf+1+vf), i =1

y ey N—1. (3.3)
Again, other weighted averages are possible but this choice works well for all three geome-
tries.

Because the fluxes out of one cell into the next are needed on the interfaces, we define

_ . f g S
AUH_% = U1 T UL i =1,2, ..., N—1. (3.4)

The boundary interface fluid velocities Av% and Avy 41 are calculated using the locations,

o,n d 5 f f
) erocties vy an€ vy - These veloch
specified as part of the problem definition because they require information from beyond
the computational domain. They become part of the user-specified boundary conditions.

Then

o,n

and the two endpoint velocities v, and v . These velocities must also be

it
Avy = vl — 22
2 2 At 35
AR (3.5)
Av = - Nty N+
Ntz = UN+g At

To determine the flux on the cell boundaries, we also need the density at the cell
interfaces. This is taken as

1 .
p7?+% = 5 [p;,?+1 +pf]) v = 17 2 PRERE} N-1. (36)
Weighted averages other than the simple one expressed in Eq. (3.6) are possible for this
definition. The formulas

po = Sip1 + Vi,

(3.7a)
pPN+1 = Snpn + Vn,

are used to calculate densities at fictitious guard cells, here indexed 0 and N + 1, which are
imagined to exist beyond the computational domain. The quantities S; and Sy are slope
multiplicative factors used to specify the multiplier of the value just inside the boundary
to be used in the guard cells. The quantities V; and Vi are user specified additive values
to augment the portion of the guard cell variable determined from the cell just inside the
computational domain. The use of uppercase V here should not be confused with the use
of a lowercase v elsewhere to denote the fluid velocity. The letters S and V are prefixed
to the corresponding variable names in the computer programs to denote the boundary
condition terms for the corresponding guard cell variables.

15

For specifying periodic boundary conditions, a logical argument in the calling sequence
to LCPFCT, Pgc, is set to .true.. This corresponds to the guard cell definitions

Po = PN ,

PN+1 = P1 -

(3.7b)

The variable Pgc must be .false. for all other cases. Both S’s and V’s are ignored when
periodic boundaries are selected. Section 6 contains a more complete discussion of how the
boundary conditions are implemented. These formulas are specified in this way because
they have to be re-evaluated several times using the updated p values during the several
stages of FCT. Thus p; —p, and pny+1—pn are always defined at the first and last interfaces
through all stages of the FCT proceedure, and Eq. (3.7) gives

. 11 o1
,0% = (§+§S1)p1+2v1)
(3.8a)
. 11 .1
PN+l = §+§SN PN+§VN-
or for periodic boundary conditions
o 1 o o

pPL = 5(,01 + PN)

(3.8b)

1
,O?H% = §(P?V+P(1))-

Using these definitions, the convective transport part of the continuity equation is
written as

Y

Aopf = A%pS — At p?Jr% Aiyr Avgp 1 4+ At ,0;7_% A1 Av; s (3.9)

— %
i=1,2 .., N.

2

The left side, A¢p¥, has not yet undergone the compression or expansion that changes A¢ to
A7 . The source terms have not yet been incorporated and the diffusion and antidiffusion
portions of flux correction still have to be included.

The source terms in Eq. (1.1) are added into Eq. (3.9),

1 1

AquiT = Agp;k + §At Ai+%(D1,i+1 + Dy ;) — §At Ai_%(Dl,i + Dy i—1)
1

+ ZAt 02773(141'—1—% + Az—%) (D2,1+1 — D2,i—1) (310)

FAtADy;, 0= 2 ., N—1.

16

The end values, at cells ¢ =1 and ¢ = N, are computed using Dyt and Dyinyts the
first and last interface values of D, which must be specifically specified by the user, in place
of the interface average at the boundaries. Other source terms can be added easily to the
formalism, but the three source terms in Eq. (1.1) are adequate to treat most important
applications.

The diffusion stage of this FCT algorithm also includes the cell volume change when
the grid is moving,

Api = Api + v N1 (071 — p?)
-V %Ai—%(pg_p?—l)ﬂ i =12 .., N.

71—

(3.11)

The quantities {p;} make up the transported-diffused density profile. The diffusion coef-
ficients can be chosen to reduce phase errors from second to fourth order. The interface-
averaged volumes {A;, 1} multiply the {r; 1} in Eq. (3.11) and are defined as

1
Mgy = AL +AD), i =12 ., N-1. (3.12)

The boundary interface volumes are chosen as

A = AT,
: | (3.13)

The convection, additional source terms, compression, and diffusion have been broken
into the successive stages shown in Egs. (3.9), (3.10), and (3.11) because we need to
compute the antidiffusive fluxes using {p7}. If the antidiffusive flux is computed using
{p:i}, that is, after the diffusion has been added, the algorithm has residual diffusion both
when the grid is Lagrangian, v/ = v9, and in the special case when both the grid and the
fluid are stationary. Therefore the transported but not diffused values, {p!'} are used to
calculate the raw, uncorrected antidiffusive fluxes,

ff% = fip3Nipiloi =0l 1= 0,1, ., N (3.14)

The antidiffusion is designed so that when the grid is Lagrangian and {Av;, +%} vanishes
in Eq. (3.9),

Aipi = A7p7 . (3.15)

Substituting Eq. (3.9) and (3.10) into Eq. (3.11) in the Langrangian case with no sources
gives

Aipi = Afp7 + Vi—&—%Ai—i—%(p?-H = p7) = Vi—%Ai—%(p? —Pi-1) (3.16)

17

because p! = p?. The antidiffusion procedure, applied to Eq. (3.16), gives

Aipit = AZP7 4 (Vi — b)Ny 3 (0740 = p7)

(3.17)

(]

- (Vif% - NF%)AF%(% —pi-1) -

When the grid is Lagrangian, the desired result of Eq. (3.15) can be achieved as long as

Vigd =iyl - (3.18)

2

Boris and Book (1976) explain that the choices

1,1,

Vitd = T3 Gl

2 63 (3.19)
_ 11,

Hipl = 6 6 it

reduce the relative phase errors in convection on a locally uniform grid to fourth order.
By defining

At | 1 1 .
€ipl = AH_%AUH_% -5 [A_?+A?+1] , 1+ =20,1, ..., N, (3.20)

the diffusion and antidiffusion coefficients are automatically equal in the Lagrangian case.
Then Egs. (3.19) are satisfied for the portion of the fluid motion that convects material
through the moving interfaces.

As in Eq. (2.27) above, the signed quantites {S;, 1} can be defined with the sign of
[pi+1 — pi] and magnitude unity. Using { fi‘fl } from Eq. (3.14) as the raw antidiffusive
fluxes and {p;} from Eq. (3.11), the corrected antidiffusive flux is

z‘c+% = Vitd max{O, min Uﬁf%b Sip i A1 (Pige = i), (321)
&%Aﬂm—gqﬂ}, i =1,2,.,N—1.
For correcting the boundary fluxes f¢ and flferl’ the min[..., ..., ...] term in Eq. (3.21)
2 2

contains only two terms. The correction coming from a difference reaching beyond the
boundary is simply dropped from the calculation except for periodic boundaries where a
periodic application of the differences is used. The result, {pI'}, is then computed as in
Eq. (2.26), where the corrected fluxes { fiir%} replace { Z."f% }. The final density at the new
time is)

pi= i g ey — fls] (3.22)

(2

18

A few of the geometric variables used above have yet to be defined. The obvious choice
of volume elements, at the beginning and end of the timesteps, in Cartesian, cylindrical,
and spherical geometries are

([riof% -, Cartesian
AST = 71'[(7“?_’;%)2 — (rl.o’_n%)Q] cylindrical (3.23)
%W[(r?f%)2 = (r7")7] spherical .
(
The corresponding interface areas are
1 Cartesian
Ay = 7'('[’)“;)_'_% + r;:_%] cylindrical (3.24)

%W[(r§+%)2 Friariia (r?+%)2] spherical .
The interface areas are time and space centered. Though other centered choices are also
possible, these particular definitions ensure that a constant density p remains constant
and unchanged when the fluid is at rest but the grid is rezoned arbitrarily. Depending
on how the LCPFCT boundary condition factors are chosen, a subject considered in both
Sections 5 and 6, the time-variable grid can even move fluid into and out of the system
while the density while a constant density remains constant.

19

4. SPLIT STEP APPLICATION OF MONOTONE FCT ALGORITHMS

Section 3 described the monotone FCT algorithm for integrating a single continuity equa-
tion using LCPFCT. We now extend the approach to solving coupled continuity equations.
Specifically, we want to solve the three conservative continuity equations of gas dynamics

simultaneously,
% = —V.pv, (4.1)
6;;;;/ = —V-(pvv) - VP (4.2)
and
aa—? = —-V-Ev-V-(vP). (4.3)

First, we consider this problem in one spatial dimension using a two stage Runge-Kutta
time integration. Then split step procedures are introduced to combine several one-
dimensional calculations to create a multidimensional monotone calculation. Section 5
expands the discusssion of this section to the practical aspects of using the LCPFCT rou-
tines to carry out the general procedures described here. LCPFCT can be used to solve
systems of continuity equations for many applications but compressible gas dynamics is
the most widespread use and serves as an ideal example to illustrate the various necessary
steps and techniques.

4.1 One-Dimensional Solution of Coupled Continuity Equations

Solving the coupled equations (4.1-4.3) is best done by determining the timestep, then
integrating from the old time t° forward a half timestep to t° + %, and then integrating
from t° to the full timestep t° + At. The results of the half-step integration are used to
evaluate time-centered spatial derivatives and fluxes. Assume that the cell-averaged values
of all fluid quantities are known at t°. The integration procedure for one timestep is:

1. Integrate the equations for a half timestep to find first-order accurate approximations
to the fluid variables at the middle of the timestep (“time-centered”). This requires
one to:

a. Calculate {v?} and {P?} using the old values of {p¢}, {pv¢}, and {E¢} known
at the beginning of the timestep.

1
b. Convect {p$} a half timestep to {p? }. (Here the superscript 1 is used to indicate
a variable at the new half timestep, not the square root).

c. Evaluate —V P? as the source term for the momentum equation.

20

11

d. Convect {pfv?} to {p?v}?} using —VP°.

e. Evaluate —V - (P°v°) as the source term for the energy equation.
1

f. Convect {E?} for a half timstep 5t to {E?} using —V - (P°v°).

2. Integrate the equations for a whole timestep to find results which are second-order
accurate in time at the end of the timestep t° + At.

a. Calculate {vi%} and {Pi%} using the half-step values {pi%}, {pz% vi%}, and {EZ%}
b. Convect {p¢} for the full timestep At to {p}}.
c. Evaluate —V P2 for the momentum sources.
d. Convect {p2v?} to {plvl} using —VPz.
e. Evaluate —V - Pzv2 for the energy sources.
f. Convect {E?} to {E!} using —V - P2v2.
3. Repeat these two procedures above to do another timestep from ¢! to ¢2.

This two-step, second-order time integration increases the accuracy of the calculations
significantly.

Often we want to couple Ny chemical species equations to Egs. (4.1) — (4.3),

ong
ot

= —V-ngv, s = 1,..,N; (4.4)

where n4(r,t) is the number density of species s and the subscript s is used here to avoid
confusion with 4, generally used above as a cell or interface index. In general you do not
have to split the timestep for these variables provided that the half-step velocities are used
in advancing {n¢} to {n}}. After integrating the fluid variables for the half and whole

1
timestep, convect these species the full timestep using the centered velocities {v?}. If the

half-step values of these variables affect either {vi%} or {PZ% }, the half-step integration for
the {n;} would also have to be performed.

4.2 Multidimensions through Timestep Splitting

One-dimensional continuity equation solvers such as LCPFCT can be used repetitively
to construct a multidimensional program by timestep splitting in the different coordinate
directions. This approach is straightforward when an orthogonal grid can be constructed
with physical boundaries along segments of grid lines. Various geometries, such as (x —y),
(r—z), or in general orthogonal coordinates (n—¢), can be integrated by timestep splitting.

21

The approach can also be extended to three dimensions and to fully general geometries
with the addition of special boundary algorithms taking into account the variation of cell
areas and volumes when a general curved boundary intersects the regular orthogonal grid.

For example, the four equations which describe ideal two-dimensional gas dynamics
in Cartesian (x — y) geometry are:

dp 0 0
E - 8y(pvy) -) (pl}m)
Opvy 0 0 oP
at - ay (pvxvy) ax (pviﬂvm) 8IE
(4.5)
dpvy, 0 0 oP
at - ay (pvyvy) ax (pvyvm) ay
OF
% = "3y [(E + P)v,] — = [(E + P)v,]
The pressure and energy are related by
E = e+ %p(vi +v,) . (4.6)

where € = P/(y — 1). The right sides of Eqs. (4.5) are separated into two parts, the y-
direction terms and the z-direction terms. This arrangement in each of the four equations
separates the y-derivatives and the x-derivatives in the divergence and gradient terms into
parts which can be treated sequentially by a general one-dimensional continuity equation
solver.

Each y-direction column in the grid is integrated using the one-dimensional LCPFCT
module to solve the four coupled continuity equations (4.5) from time ¢t to ¢t + At. The

22

y-direction split-step equations to be solved are

= D)

ot Jy
Opvy 0

g~ oy

(4.7)

apvy__2<vv)_8_P

o oy T By

OF))

— = — —(Fv,) — —(Pvy) .
Equations (4.7) are in the form of the general continuity equation (1.1) with a = 1 for
planar geometry. Because the y gradients and fluxes are being treated together, the one-
dimensional integration connects those cells which are influencing each other through the
y-component of convection.

The changes due to the derivatives in the z-direction must now be included. This is
done in a second split step of one-dimensional integrations along each z-column,

= D ow)

ot~ oz

e D o) - O

ot oz P T gy

(4.8)

dpvy, 9

(915 - 833 (pvva)

OF 9 9

where a = 1 in Eq. (1.1) for planar geometry. The x and y integrations are alternated,
each pair of sequential integrations constituting a full convection timestep. Thus a single
optimized algorithm for a reasonably general continuity equation can be used to build up
multidimensional fluid dynamics models. Analogous equations for axisymmetric geometry
have been written out in Oran and Boris (1987).

To use this split-step approach, the timestep must be small enough that the distinct
components of the fluxes do not change the cell-averaged values appreciably during the

23

timestep. This approach is second-order accurate as long as the timestep is small and
changed slowly enough, but there is still a bias built in depending on which direction,
x or y, is integrated first. To remove this bias, the results from two calculations for
each timestep can be averaged, an expensive but effective solution. Alternately a fully
multidimensional FCT algorithm can be used such as developed by Zalesak (1979, 1981)
or DeVore (1989,1991) with some corresponding extra cost and complication. Generally
this sequencing bias is quite small and is usually ignored.

24

5. HOW TO USE LCPFCT

The set of Fortran subroutines that make up the LCPFCT library is listed in Appendix A.
This library contains a main subroutine, called LCPFCT, and several auxiliary subroutines.
This structure serves both efficiency and flexibility: minimizing the need to repeat common
calculations and providing flexibility in defining various geometries, source terms, and
boundary conditions. Thus, for example, a single velocity profile may be used to convect
a number of different continuity equations representing different chemical species, fluid
phases, or ionization states. All velocity-dependent coefficients that are common to the
FCT algorithms for these several equations during a particular timestep and integration
direction are computed once by subroutine VELOCITY and placed in a common block for
use by the repeated calls to LCPFCT which will integrate each of the equations separately.
An entire calculation, therefore, requires a sequence of calls 1) to define the geometry by
specifying a suitable computational grid, 2) to calculate a number of velocity-dependent
factors, 3) to establish the boundary condition coefficients for the next continuity equation
to be integrated, 4) to calculate the source terms in Eqgs. (4.1-4.3), and 5) to advance
the fluid variables one continuity equation at a time.

5.1 LCPFCT Variables in Common

Information is passed between the user’s program and the LCPFCT library generally
through the arguments to the subroutine calls. Information is passed between the various
subroutines of the LCPFCT library both through the subroutine arguments and through
named common blocks. The user is asked to control and store the information pertaining
specifically to his problem and the particular continuity equations being solved while the
LCPFCT library controls all data that might be reused or that is particular to the FCT
algorithms being used to integrate and manage the grid and the equations.

Each of the subroutines in the library performs a different, well-defined task. The
main subroutine LCPFCT convects the variables, and it must be called for each variable
integrated at each timestep or partial timestep. Subroutine MAKEGRID calculates the
geometric coefficients and must be called any time the grid cell interfaces are changed. The
subroutine VELOCITY updates the velocity-dependent coefficients and must be called
each time the convective velocity or the grid is changed. Subroutine SOURCES is called
separately each time a new source term for a continuity equation needs to be evaluated.
Thus none, one, or several different source terms may be added together and passed to the
continuity equation solver. LCPFCT then resets the source terms to zero at the end of
its execution. Thus source terms, which generally are not reuseable in any case, must be
recomputed for each call to LCPFCT. Table 5.1 below defines the variables in FCT_GRID
and their equivalent algorithmic/physical definition is given in Section 3. These library
common blocks generally begin with the prefix FCT_.

25

Table 5.1 Variables in LCPFCT Common Blocks

Type

Text Symbol Meaning

FCT_GRID variables

ROH RA(N+1)*
RNH RA(N+1)
LO RA(N)

LN RA(N)
AH RA(N+1)
LH RA(N+1)
RLN RA(N)
RLH RA(N+1)
DIFF RA(N+1)

7’;’_% Cell boundary location; start of timestep
T 1 Cell boundary location; end of timestep
A9 Cell volume; start of timestep

A7 Cell volume; end of timestep

A, 1 Cell interface area; average over timestep
Ay = 5[A7 + A}

L/A?

S[1/AF +1/A7]
Array used for grid differences in MAKEGRID

FCT_VELO variables
HADUDTH RA(N+1)

i_;Av‘_% Interface flux coefficient to determine
transported flux

EPSH RA(N+1) Av;_1At A;_1/A;_1 Nondimensional interface velocity

NULH RANN+1) v 1A; s Diffusion flux coefficient

MULH RANN+L) g 1Ay Raw antidiffusion flux coefficient

ADUGTH RA(N+1) A;_a[r? , — 77] Volume swept out by interface
AtAv, 1

VDTODR RA(N+1) 7 — 7 Nonconservative form of transport coefficient
1-&-% i—3

FCT_MISC variables

SOURCE RA(N) { }]L Sum of all the source terms

DIFF1 REAL Residual diffusion; value of 5; 1 used in

antidiffusion coefficient; default = 1.000
FCT_NDEX variables
SCALARS RA(NIND) { }]L Additive scalar source terms

INDEX IA(NIND)
NIND INTEGER

Scalar list of cells to receive added sources
Number of nonzero scalars in the indexed list

26

Table 5.1 Variables in LCPFCT Common Blocks (Cont.)

Type Text Symbol Meaning

FCT_SCRH variables
LNRHOT RA(N)* A?p; and ATpl? Transported/diffused mass elements

LORHOT RA(N) A2pf and A%p] Transported mass elements

FSGN RA(N+1) S5;_1 Sign of grid differences of p;

FABS RANN+1) |fd,| Absolute value of raw antidiffusive flux
FLXH RA(N+1) muthiple uses Used for convective and diffusive fluxes
TERP RA(N+1) S;_1 A (piv1 — pi) Antidiffusive flux limit from right
TERM RA(N+1) S 3 A1 (pi—1 — pi-2) Antidiffusive flux limit from left
RHOT RA(N) oF Transported, sources added and

compressed density

RHOTD RA(N) pi Transported diffused, sources added and
compressed density

SCRH RA(N) multiple uses Source term scratch space

SCR1 RA(N) multiple uses Source term scratch space

* RA(N) stands for Real Array of length N.
** TA(N) stands for Integer Array of length N.

T Source terms defined in Eq. (3.10)

As will be seen in the appendices, all of the one-dimensional LCPFCT arrays meant to span
the maximum size of the physical grid are dimensioned N PT" (number of points) and this is
set to 202 everywhere by a parameter statement. When a bigger problem is attempted, for
example a 250 x 150 grid in two dimensions, this size should be increased. By convention
we leave two more points than the maximum line through the system although one extra
should be enough.

The LCPFCT library is structured so that information that needs to be passed from
the user’s control program to LCPFCT is done through arguments in various subroutine
calls. The user generally does not need to access the internal variables stored in the
named common blocks. There are exceptions to this, however, when a more advanced
user may want to and can access these internal variables. For example, the common block
FCT_GRID stores and transmits information about the grid locations, grid motion, cell
volumes and cell interface areas. One can include FCT_GRID in a user-supplied subroutine
where the volumes and areas of the cells are computed for a nonstandard user-specified grid

27

geometry. Another example could involve user modification of the antidiffusion coefficients
(Fortran variable MULH) in FCT_VELO to steepen known fluid interfaces or contact
surfaces.

FCT_VELO contains velocity-dependent information about diffusion and antidiffusion
coefficients and fluxes through the cell interfaces. FCT_MISC includess the array contain-
ing the accumulated source terms and the residual diffusion coefficient, DI F'F'1 (defaulted
to 0.999). DIFF1 may be reset by a call to subroutine RESIDIFF to unity for minimal
residual diffusion or to slightly smaller values than 0.999. FCT_SCRH contains a number
of internal scratch vectors used by the LCPFCT subroutine and other subroutines of the
libary. They are in common to allow reuse of the space but no information, by convention,
is ever passed between subroutines using this common block. Equivalencing the variables
in FCT_SCRH with scratch storage in the user’s program provides a way to save space
but the capacity of modern computers generally makes this a needless economy. There is
also a common block FCT_NDEX which appears only in SOURCES, ZERODIFF, AND
ZEROFLUX. FCT_NDEX is intended to convey scalar indexed source terms directly from
a user program to SOURCES, or indexed lists of cells to ZERODIFF or ZEROFLUX,
without need for a more complex calling sequence. These and other miscellaneous uses of
the LCPFCT library including a few special auxiliary routines are discussed in Section 7.

The LCPFCT subroutines, their arguments, and their calling sequences are decribed
in detail in the subsections below, both in tabular form and in explanatory text. The
Fortran subroutines themselves are reproduced in Appendix A. There are, in addition
several other library subroutines in Appendix A whose use is often not necessary or which
are needed only for some simple auxiliary tasks (ZERODIFF, ZEROFLUX, CONSERVE)
or for special types of applications (COPYGRID, NEW_GRID, SET_GRID). These are
discussed only briefly here and in Section 7 on “Esoterica” but they also appear in Appendix
A. By reading through the LCPFCT subroutine programs in Appendix A, the reader can
determine the function of each routine exactly by looking at the quantities which each
uses, computes, and leaves in the named common blocks.

5.2 Subroutines in LCPFCT
Subroutine MAKEGRID: —

Subroutine MAKEGRID sets up the grid parameters and computes cell volumes and inter-
face areas for the entire LCPFCT library. The information computed by MAKEGRID is
passed through common block FCT_GRID to subroutines VELOCITY, SOURCES, CON-
SERVE, CNVFCT, and LCPFCT. Table 5.2 shows the calling sequence and defines the
arguments for MAKEGRID. The single subroutine MAKEGRID subsumes the functions
played by the three subroutines IGRIDD, NGRIDD, and OGRIDD in the previously pub-

28

Table 5.2 Arguments in Subroutine MAKEGRID

CALL MAKEGRID (RADHO, RADHN, I1, INP, ALPHA)

Variable Name Type Text symbol Meaning

RADHO RA(INP)* o 1 Cell interfaces at start of timestep
RADHN RA(INP)* r?_i Cell interfaces at end of timestep

I1 Integer 11 - % Index of first active cell interface
INP Integer IN + % Index of last active cell interface
ALPHA Integer a = 1 for planar (Cartesian) geometry

= 2 for cylinderical geometry
= 3 for spherical geometry
= 4 user-supplied geometry

* RA(N) stands for Real Array of length N .

lished version of the FCT library. This is the single greatest change from a user’s per-
spective in the current version and was made to simplify control of the grid at the cost of
a few arithmetic operations which strictly speaking can be avoided in some applications.
MAKEGRID is used to generate the geometry-dependent coefficients for a particular line
of integration in a particular direction. If the grid is fixed and only one direction of inte-
gration is active, one call to MAKEGRID is the only geometric call needed. If all rows of
a two-dimensional calculation have the same grid, MAKEGRID only need be called once
before the first row integration of a timestep. Then it must be called again before be-
ginning column integrations to complete the split multidimensional timestep. The calling
sequence to subroutine MAKEGRID has five arguments:

1. RADHO - A real array containing the location of the “old” interfaces of the grid

cells, which is referred to in Section 3 as r? 1
2

2. RADHN - A real array containing the location of the “new” interfaces of the grid

cells, which is referred to in Section 3 as 77, .
5

3. I1 — The first index of the old and new cell interfaces supplied in RADHQO and
RADHN. Typically the grid is set up from cell and interface I1 across the entire
system to cell IN and interface I/N + 1 even though any specific integration may use
only a portion of the grid. Care should be exercised if I1 does not equal 1.

4. INP — The last index of the old and new active cell interfaces supplied in RADHO

29

and RADHN.

5. ALPHA — The grid geometry indicator. a = 1 for cartesian geometry, o = 2 for
cylinderical geometry, and o = 3 for spherical geometry. The fourth option, a =
4, requires the user to write a subroutine called before the call MAKEGRID. This
subroutine must compute the timestep centered interface areas, {AH %}, and the
old and new cell volumes {LO;} and {LN,}, placing the results in common block
FCT_GRID. Even for the case of the user supplied geometry, the old and new interface
locations are passed to MAKEGRID through the arguments RADHO and RADHN.

Subroutine VELOCITY: -

Table 5.3 Arguments in Subroutine VELOCITY

CALL VELOCITY (UH, I1, INP, DT)

Variable name Type Text symbol Meaning

UH RA(INP)* Vi1 Cell interface velocities

I1 Integer 11— % index of the first interface integrated
INP Integer IN + % index of the last interface integrated
DT Real At time step

* RA(N) stands for Real Array of length N .

After the grid geometric factors are computed, subroutine VELOCITY is used to compute
the velocity-dependent coefficients for the convective transport, diffusion, and antidiffusion.
This call must be made each time the convective transport velocity is changed. VELOCITY
need be called only once if, for example, the velocity is constant in time. However, for
a typical fluid problem with a second-order time integration, VELOCITY must be called
twice for each row and column of the grid: once with the velocities at the start of the
timestep and again after the half step using the velocities computed from the half step.
VELOCITY must also be called each time there is a change in the grid locations even if
the velocity field itself has not changed. The calling sequence to subroutine VELOCITY
has four arguments:

1
1. UH - The fluid velocities, {'U?’_Zl}, on the cell interfaces, {r;_1}. These must be

1
computed as some average of the cell centered velocities {v?’ 21,

30

2. I1 — The interface index of the first cell, at 7, ., in the domain to be integrated. This

2
is the location where boundary conditions at one side of the domain of integration are
specified.

3. INP — The interface index of the last cell, at r7,; L1 in the domain to be integrated.
2
This is the location where boundary conditions at the other side of the domain of

integration are specified.

4. DT — the timestep.

1 1
The velocities v?’f_l and U?}\? L1 are also the boundary conditions on the velocity and

2 2
determine the flux of the conserved quantity through the boundary. If the velocity of the
grid at the boundary is equal to UH there, the convection flux of the conserved quantity

through the boundary should be identically zero.

The LCPFCT routines also allow the user to integrate variables in a selected part
of the grid. For example, one can eliminate a corner of a two-dimensional grid from
the integration or allow this corner to be integrated seperately. Similarly the user can
implement special boundary conditions in the interior of the grid. This is done by using
the parameter I1 (different from 1) to define the first cell to be integrated or reducing
INP = IN + 1, the last cell interface. It is important to remember that the grids and
fluxes are defined on the boundaries of cells and that I /N P should be the value of the last
cell to be integrated plus one. There should always be IN + 1 interfaces when IN cells
are integrated.

Subroutine SOURCES: —

Once the call to VELOCITY has been made, these velocity-dependent coefficients can be
used to convect several different conserved quantities by corresponding separate calls to the
main subroutine LCPFCT. For the solution of the coupled fluid dynamics equations, this
involves a call to LCPFCT for the mass density, each momentum density, and the energy
density. For each of these equations, source terms are added by a call to the subroutine
SOURCES immediately prior to the corresponding call to LCPFCT. The sum of several
different sources can be accumulated by a sequence of calls to SOURCES, which keeps
the running sum from all SOURCES calls since the last call to LCPFCT in the real array
SOURCE in FCT_MISC. Once LCPFCT uses SOURCE, it is reset to zero so new sources
can be added or it can be left at zero until it is needed again. The calling sequence of
subroutine SOURCES has eight arguments:

1-2. I1 and IN are the first and last cells integrated using the velocities set up by the last
call to VELOCITY.

31

Table 5.4 Arguments in Subroutine SOURCES

Call SOURCES (11, IN, DT, MODE, C, D, D1, DN)

Variable Name Type Text symbol Meaning

11 Integer 1 Location of first cell of integration
IN Integer N Location of last cell of integration
DT REAL At Timestep

MODE Integer = 1 computes V - D, conservatively

C
D
D1
DN

= 2 computes C52V D,y

= 3 adds D3 to the sources

= 4 V - D; from interface data D

= 5 9V Dy from interface data D

= 6 adds +C for selected indexed cells

RA(N)* Ch.i Array of source variables
RA(N) Dy -1 Array of source variables
Real Dp First interface value of D (if needed)
Real Dinp Last interface value of D (if needed)

* RA(N) stands for Real Array of length N .

3.

DT is the current timestep used to advance the convected quatities. The value of DT
passed to sources should be equal to one half the whole-timestep value for the half
timestep integration in a fluid dynamics calculation.

MODE, an integer, determines the types of source terms included. SOURCES com-
putes divergence, gradient, and additive source terms according to Eq. (3.10). When
MODE = 1, the source term (V- D) in Eq. (3.10) is computed using the cell-centered
array D. When MODE = 2, the source term (CVD) in Eq. (3.10) is computed from
cell-centered arrays C and D. MODFE = 3 adds an externally computed source term
Ds as in Eq. (3.10). MODE = 4 and MODE = 5 are used to compute the same
sources as MODE =1 and MODFE = 2, except that arrays C and D are provided
as cell-interface data by the user. MODE = 6 is used like MODEFE = 3 with nonzero
sources appearing only at the NIN D cells indicated in the first NIN D locations of
the integer array INDEX. When MODFE =1, 3, 4, or 6, the array C' is not used at
all.

. C and D are arrays of source datahaving different uses as described in item 4 above.

The values of the source terms computed by SOURCES are passed to the subroutine

32

LCPFCT through the common block FCT_MISC in the real array SOURCE.

7-8. D1 and DN are source data at the boundaries of the integration region.

Subroutine LCPFCT: -

The main subroutine LCPFCT integrates and updates the variables. It must be called for
each of the conserved quantities to be integrated. Subroutine CNVFCT is treated exactly
the same as LCPFCT with the one difference that the compression term in the continuity
equation is left out. Thus CNVFCT really solves the ‘advection’ equation rather than the
full continuity equation. The calling sequence for subroutine LCPFCT (CNVFCT) has
nine arguments:

1. RHOO — A real array that stores the values of one of the conserved quantities pg
at the beginning of the timestep. The symbol p is used here to represent the mass
density, momentum density, energy density, species density, or any other conserved
quantity for which the fluid velocity v used in the previous call to VELOCITY is the
appropriate convective velocity.

2. RHON - A real array that stores the values of p* at the end of the timestep. RHOO
and RHON may be the same array provided the values of RHOO do not need to be
saved. (These arrays should be different if a two-step algorithm is being used.)

3—4. I1 and IN are the first and last grid points integrated in the domain from cell I1 to
IN.

The next four arguments, SRHO1, VRHO1, SRHON, VRHON, are real numbers used
to define a general set of boundary conditions. LCPFCT uses guard cells on either end
of the integrated domain to define boundary conditions. These guard cells are used to
continue the calculation from the interior of the grid to the exterior of the grid and provide
the missing data for the calculation on either end of the integrated domain. The guard-cell
values are a linear combination of the value just inside the boundary and an externally
imposed value.

5. SRHO1 — The slope boundary condition factor for the guard-cell values adjacent to
cell I1. Using SRHO1, the derivative of the solution can be specified on the first
interface.

6. VRHO1 — A constant to be added to the first guard cell values. The equation for
the density value at guard cell I1 —11is p, = 51 X pr1 + V4.

7. SRHON - The slope boundary condition factor for the guard-cell values adjacent to
cell IN. Using SRHON, the derivative of the solution can be specified on the last

33

Table 5.5 Arguments in Subroutines LCPFCT and CNVFCT

Call LCPFCT (RHOO, RHON, I1, IN, SRHO1, VRHO1, SRHON, VRHON, PBC)
Call CNVFCT (RHOO, RHON, I1, IN, SRHO1, VRHO1, SRHON, VRHON, PBC)

Variable Name Type Text Symbol Meaning

RHOO RA(N)* p? Grid point densities at start

RHON RA(N) v Grid point densities at end

I1 Integer Ilorl Index of first cell of integration

IN Integer INorN Index of last cell of integration
SRHO1 Real S1 First derivative boundary condition
VRHOL1 Real Vi First constant boundary condition
SRHON Real SN Last derivative boundary condition
VRHON Real VN Last constant boundary condition
PBC Logical .true. = Periodic boundary conditions

* RA(N) stands for Real ARRAY of length N .

interface.

VRHON - A constant to be added to the last guard cell values. The equation for
the density value at guard cell IN +1is p; = Sy X pry + V.

PBC - Declared a ‘logical’ variable with the value .true. for periodic boundary
conditions and .false. otherwise. When periodic boundary conditions are used, the
other four boundary condition variables (5-8 above) are ignored.

A more complete description of how to specify and use these variables along with

examples of how to set up a variety of boundary conditions for gas dynamic problems is

the subject of Section 6. Actual programs using some of these examples are given in the

appendices.

The Do loops in LCPFCT can be identified with the corresponding equations in

Section 3. Eq. (3.6) is combined with part of Eq. (3.9) in Do 1. Do 2 combines the rest
of Eq. (3.9) with eq. (3.10), the precomputed source terms, and with Eq. (3.11). Do 3
corresponds to Eq. (3.14) and also computes the differences of the transported, diffused

density later used in Do 5, the flux-correction formula Eq. (3.21). Do 4 computes a

number of the FCT terms also appearing in Eq. (3.21). Do 5 calculates the new density
profile {pI'} of Eq. (3.22), returned as the output of LCPFCT.

34

In addition to the main sequence of subroutines, there are additional subroutines
which give the LCPFCT library considerable added flexibility. These are: CNVFCT, a
nonconservative form of FCT; ZEROFLUX and ZERODIFF, which turn off the advection
and/or diffusion fluxes at specified interfaces; RESIDIFF, discussed above, to change the
residual diffusion coefficient; and CONSERVE, which monitors the conservation of user-
specified variables.

CNVFCT (RHOO, RHON, I1, IN, SRHO1, VRHO1, SRHON, VRHON, PBC) is a non-
conservative convective form of the FCT solver which solves the advective equation

0
Py vVp = Sources , (5.1)
ot
rather than the conservative form
0
8_,;) + Vpv = Sources . (5.2)

CNVFCT serves roughly the same purpose as the LCPFCT subroutine and the argu-
ment list is identical to that of LCPFCT. CNVFCT finds its main usage when a mass
fraction for a conserved density must be transported. Thus, if f = pa/ptotar is the
ratio of a species density to the total density, f satisfies Eq. (5.1) rather than (5.2).
Source terms are treated in the same way in both LCPFCT and CNVFCT and the
sequence of auxiliary subroutine calls is also identical.

ZERODIFF (IND) is a specialized subroutine that allows the user to set to zero all
diffusive and antidiffusive fluxes calculated in LCPFCT through an arbitrary number
of specific cell interfaces. ZERODIFF does not alter the convective fluxes through the
selected interfaces and is therefore useful in one-dimensional codes where the interfaces
of a number of different materials are being tracked in a Lagrangian manner. ZERO-
DIFF guarantees that there is no diffusion of the materials across the chosen interfaces.
In multidimensional models, ZERODIFF may be used to ensure that nothing diffuses
onto or off of the grid at a boundary where the incoming flux is known. Examples of
the use of ZERODIFF are included in the test programs reprinted in the appendices.
The call to ZERODIFF should be made just after the call to VELOCITY. A call
to VELOCITY erases the effect of a call to ZERODIFF. The calling sequence for
subroutine ZERODIFF has one argument:

1. IND - If positive, an integer index to the cell interface where the diffusive fluxes are
to be set identically equal to zero. If negative, the user must set NIND in common
block FCT_NDEX to the number of interfaces to be zeroed and fill the first NIND
locations of the integer array INDEX (also in FCT_NDEX) with the corresponding
interface indices.

35

ZEROFLUX (IND) is similar to ZERODIFF, except that it sets to zero the convective
fluxes as well as the diffusive and antidiffusive fluxes. The calling sequence is identical
to that for ZERODIFF. ZEROFLUX is useful at solid walls. Examples of the use of
ZEROFLUX are included in the test programs reprinted in the appendices. The call
to ZEROFLUX should be made just after the call to VELOCITY. A call to VELOC-
ITY erases the effect of a call to ZEROFLUX. The calling sequence for subroutine
ZEROFLUX has one argument:

1. IND - If positive, an integer index to the cell interface where the diffusive fluxes are
to be set identically equal to zero. If negative, the user must set NIND in common
block FCT_NDEX to the number of interfaces to be zeroed and fill the first NIND
locations of the integer array INDEX (also in FCT_NDEX) with the corresponding
interface indices.

CONSERVE (RHO, I1, IN, CSUM) is a useful utility subroutine that allows the user
to monitor the conservation of variables. It calculates the conservation integral as a

summation,
IN

CSUM =Y A?pi, (5.3)
i=I1
where the quantity summed can be any of the grid quantities {p;}. CONSERVE com-
putes the conservation integral using cell volumes from the last call to MAKEGRID.
The calling sequence for subroutine CONSERVE has four arguments:

1. RHO — An array of real values of some grid quantity p¢ for which the conservation
integral is to be calculated.

2-3 I1 and IN — The first and last cells to be included in the conservaton integral.
4. CSUM - A real variable where the summed quantity is to be stored.

LCPFCT is an exactly conservative algoritm in the sense that any physically conserved
quantity summed over a fixed interval remains constant to within computer roundoff error.
However, the user must beware of boundary conditions. Grid motion or fluxes out of the
boundary result in a variable value of the conserved quantity determined by the flux
through the two end boundary interfaces.

There are also three rather special purpose gridding routines: COPYGRID, which sets
aside a copy of all the grid variables for later reuse without recomputation; SETGRID,
which is used for polar coordinates; and NEWGRID, which reduces the number of geo-
metrical calculations when the new grid interface locations change but the old ones remain
the same. These subroutines are also reproduced on Appendix A and discussed briefly in
Section 7 entitled “Additional Information”.

36

5.3 Typical Calling Sequences

We now show how the various LCPFCT subroutines are interlinked to provide a com-
plete calculation. Examples through simple Fortran test programs are also given in the
appendices and summarized in the following tables. A typical sequence of calls for a
one-dimensional gas dynamics problem on a fixed Eulerian grid is given in Table 5.6.

Table 5.6 Calls for One-Dimensional Eulerian Gas Dynamics Problems

t Calculate grid locations RADHN (r , for i =1,..., N + 1); initialize variables
2
Call MAKEGRID (RADHN, RADHN, 1, N+1, 1)

7 Begin timestep loop
1 Compute half step interface velocity UH (vf

Call VELOCITY (UH, 1, N+1, 0.5*DT)

Call ZERODIFF (1)

Call ZERODIFF (N+1)

Call LCPFCT (RHOO, RHON, 1, N, 1.0, 0.0, 1.0. 0.0, .false.)
Call SOURCES (1, N, 0.5*DT, 2, ONE, PRES, PRE1, PREN)
Call LCPFCT (RVXO, RVXN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)
Call SOURCES (1, N, 0.5*DT, 1, ZERO, PV, PV1, PVN)
Call LCPFCT (ERGO, ERGN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

1 Compute cell velocities, source terms, for the full step based on the half-step results
(see GASDYN example in Appendix C)

Call VELOCITY (UH, 1, N+1, DT)

Call ZERODIFF (1)

Call ZERODIFF (N+1)

Call LCPFCT (RHOO, RHON, 1, N, 1.0, 0.0, 1.0. 0.0, .false)

Call SOURCES (1, N, DT, 2, ONE, PRES, PRE1, PREN)

Call LCPFCT (RVXO, RVXN, 1, N, 1.0, 0.0, 1.0, 0.0, .false)

Call SOURCES (1, N, DT, 1, ZERO, PV, PV1, PVN)

Call LCPFCT (ERGO, ERGN, 1, N, 1.0, 0.0, 1.0, 0.0, .false)

1 Update velocities, and timestep and begin next timestep

), cell PRES (P?), and cell PV (Pfv?)

1
2

T Indicates work the user must do.

Table 5.7 shows a sequence of calls appropriate to a Lagrangian fluid dynamics cal-
culation (advancing the cell interface locations as well as p, pU, and E). In these two

37

Table 5.7 Calls for One-Dimensional Lagrangian Gas-Dynamic Problem

T Begin timestep loop
t Calculate grid locations RADHO (r¥_,); initialize variables

T Compute new interface locations RADHN (ri 1), interface velocities UH (v{ ,), and
cell source terms PRES (P?), and PV (P?v?) for the half step:)

Call MAKECGRID (RADHO, RADHN, 1, N+1, 1)

Call VELOCITY (UH, 1, N+1, 0.5*DT)

Call ZERODIFF (1)

Call ZERODIFF (N+1)

Call LCPFCT (RHOO, RHON, 1, N, 1.0, 0.0, 1.0. 0.0, .false.)

Call SOURCES (1, N, 0.5*DT, 2, ONE, PRES, PLEFT, PRIGHT)

Call LCPFCT (RVXO, RVXN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

Call SOURCES (1, N, 0.5*DT, 1, ZERO, PV, PVLEFT, PVRIGHT)

Call LCPFCT (ERGO, ERGN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

1 Compute grid, velocities, and source terms for full step based on half-step results
Call MAKEGRID (RADHO, RADHN, 1, N+1, 1)

Call VELOCITY (UH, 1, N+1, DT)

Call ZERODIFF (1)

Call ZERODIFF (N+1)

Call LCPFCT (RHOO, RHON, 1, N, 1.0, 0.0, 1.0. 0.0, .false.)

Call SOURCES (1, N, DT, 2, ONE, PRES, PRE1, PREN)

Call LCPFCT (RVXO, RVXN;, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

Call SOURCES (1, N, DT, 1, ZERO, PV, PV1, PVN)

Call LCPFCT (ERGO, ERGN, 1, N, 1.0, 0.0, 1.0, 0.0, .false.)

1 Update new interface locations, velocities, and timestep and begin next timestep

7 Indicates work the user must do.

examples cell-center pressure source terms are sent to Subroutine SOURCES for use with

MODE =1 and MODE = 2. In Subroutine GASDYN (Appendix C), interface pres-

sure source terms are computed by the user, calling for MODFE = 3 and MODE = 4
in Subroutine SOURCES. A multidimensional fluid dynamics program can be formed by
time splitting the equations into successive calculations in each direction. The half and

whole steps are performed in successive pairs with appropriate calls to MAKEGRID to
change the grid for the coordinate directions. If the grid moves, MAKEGRID is called

38

Table 5.8 Calls for Two-Dimensional Gas-Dynamic Problem

7 Begin new time step with the x coordinate direction integration ...
Call MAKEGRID (XCOORD, XCOORD, 1, NX+1, 1)

1 Calculate velocities and source terms for the z-direction half step
Call VELOCITY (VX, 1, NX+1, 0.5*DT)

Call ZEROFLUX (1)

Call ZEROFLUX (NX+1)

Call LCPFCT (RHOO, RHON, 1, NX, 1.0, 0.0, 1.0, 0.0, .false.)
Call SOURCES (1, NX, 0.5*DT, 2, ONE, PRES, PRE1X, PRENX)
Call LCPFCT (RVXO, RVXN, 1, NX, 1.0, 0.0, -1.0, 0.0, .false.)
Call LCPFCT (RVYO0, RVYN, 1, NX, 1.0, 0.0, 1.0, 0.0, .false.)
Call SOURCES (1, NX, 0.5*DT, 1, ZERO, PV, PV1X, PVNX)
Call LCPFCT (ERGO, ERGN, 1, NX, 1.0, 0.0, 1.0, 0.0, .false.)

1 Calculate velocities and sources for whole step
T Repeat the last nine calls replacing 0.5*DT by DT

T Begin y-direction calculations
Call MAKEGRID (YCOORD, YCOORD, 1, NY+1, 1)

1 Calculate y-direction velocities and sources for half step

Call VELOCITY (VY, 1, NY+1, 0.5*DT)

Call ZEROFLUX (1)

Call ZEROFLUX (NY+1)

Call LCPFCT (RHOO, RHON, 1, NY, 1.0, 0.0, 1.0, 0.0, .false.)
Call LCPFCT (RVXO, RVXN, 1, NY, 1.0, 0.0, 1.0, 0.0, .false.)
Call SOURCES (1, NY, 0.5*DT, 2, ONE, PRES, PRE1Y, PRENY)
Call LCPFCT (RVYO0, RVYN, 1, NY, 1.0, 0.0, -1.0, 0.0, .false.)
Call SOURCES (1, NY, 0.5*DT, 1, ZERO, PV, PV1Y, PVNY)
Call LCPFCT (ERGO, ERGN, 1, NY, 1.0, 0.0, 1.0, 0.0, .false.)

T Repeat the above nine statements for the full timestep

T Indicates work the user must do.

with both the old and the new grid locations. A typical x — y cartesian geometry model
with hard wall boundaries is given schematically in Table 5.8. The daggers in the table
indicate material the user must supply.

39

5.4 Summary of the Major LCPFCT Library Routines

LCPFCT has several subroutines that perform the four distinct tasks required to advance
one or more general continuity equations a single timestep. Here we summarize these four
subroutines and their associated arguments and calling sequences.

1. MAKEGRID (RADHO, RADHN, I1, INP, ALPHA) — sets up the finite volume
computational grid at the start of the run or when changing cell definitions at the
beginning of or during a timestep. Both the grid at the beginnning of the integration
step and at the end of the integration step must be specified.

4. VELOCITY (UH, I1, INP, DT) — calculates all velocity dependent terms, the diffu-
sion, and antidiffusion coefficients v, 1,5 1,11, 1.

5. SOURCES (I1, IN, DT, MODE, C, D, D1, DN) — can be called once or repeatedly
to build up composite sources terms of several types.

6. LCPFCT (RHOO, RHON, I1, IN, SRHO1, VRHO1, SRHON, VRHON, PBC) -
takes the old densities RHOO on the old grid and calculates new densities RHON on
the new grid using the flux-corrected transport (FCT) algorithm.

These four tasks described are programmed separately to eliminate unnecessary recal-
culation of quantities which appear in several different continuity equations having the
same flow field (VELOCITY) or which must be calculated only when the grid is changed
(MAKEGRID). The source terms (SOURCES) are treated separately because they are not
used at all in many continuity equations. Source terms should always be computed imme-
diately before they are used in a call to LCPFCT. LCPFCT then resets the source terms
to zero just before returning to the users program each time it is called. For example, if
the source terms for the energy equation are computed before the momentum equation is
advanced, they will be lost after LCPFCT is called to advance the momentum equation.
In addition the momentum equation would then be solved incorrectly because it includes
the energy source terms.

40

6. BOUNDARY CONDITIONS

Boundary conditions, distinct from the LCPFCT solution algorithm, are needed to model
both confined and unconfined computational domains. When the system modeled is ef-
fectively unconfined, an infinite volume must be represented with only a finite number of
degrees of freedom. When the system is confined, the effects of realistic walls and flexible
interfaces with regions of inflow and outflow must be treated. Boundary conditions for com-
putational fluid dynamics have been discussed extensively — see, for example, Grosch and
Orszag (1977), Turkel (1980), and Kutler (1982). Oran and Boris (1987) discuss some of
the general problems of applying boundary conditions to finite-difference and finite-volume
models. Specifying physically accurate outflow conditions for multidimensional regions of
subsonic flow receives the most attention. Recently Thompson (1987,1990), Givoli (1991),
and Poinsot and Lele (1992) have discussed methods for this problem. Grinstein (1993)
has considered these open outflow boundary conditions specifically for the FCT algorithms
used here.

Depending on the physical modes in the system being simulated, accurate treatment of
the boundary conditions will differ greatly. In hyperbolic systems that simulate convection
and acoustic phenomena, waves may travel much faster than the convective flows in which
they propagate. These waves carry information through the medium in all directions
and thus information can enter the computational grid as well as leave it. In parabolic
systems, the information flow through the computational domain is generally one sided so
the solution can be advanced preferentially in one direction. Some supersonic, compressible
flows have all characteristics moving in one direction so that one-sided or direction-biased
equations can be used to find suitable boundary conditions.

There are three distinct ways to implement boundary conditions in numerical models
(Oran and Boris, 1987):

1. Expand the continuum fluid variables in a linear superposition of expansion functions
with the boundary conditions built into each of them, so that any combination auto-
matically satisfies the boundary conditions. Although expansions are used in many
methods, this approach cannot be applied systematically to the FCT algorithms.

2. Develop separate finite-difference formulas for boundary cell values which reflect the for-
mulas used in the interior of the mesh combined with auxiliary relations to determine
the values of the grid variables which would lie outside the computational domain.
These formulas often involve simple analytic formulations for the boundary variables
that use information about the behavior of the system near and at the wall or as it
approaches infinity.

3. Develop extrapolations from the interior to guard or ghost cells outside the computa-

41

tional domain that continue the mesh a distance beyond the domain boundary. These
ghost boundary cells allow cells on the domain boundary to be treated as interior
cells, often with appreciable simplification in the programming.

Of these methods, the third, defining guard-cell values calculated separately, is the easiest
to use and is therefore adopted in LCPFCT. Figure 6.1 shows a two-dimensional uniform
grid whose boundary has been outlined by thicker lines. The grid has N, cells in the
z-direction, extending from z to xg, and N, cells in the y-direction, extending from yp
to ypr. Two rows of cells in dashed lines are shown surrounding the computational grid, the
so-called guard cells or ghost cells. Most applications of the LCPFCT subroutines require
the user to provide conditions for one layer of guard cells; any second or third layers
used implicitly in higher differences are calculated inside the LCPFCT routines from the
user-provided formulas.

Using special finite-difference formulas near boundaries is usually equivalent to defin-
ing variable values in guard cells. In LCPFCT, the user provides the coefficients of formulas
that define the guard cell values from the current boundary cell quantities. Rather than
specifying fixed values at the beginning of the timestep, this approach allows the guard
cell values to be updated repeatedly as the fluid quantities in the boundary cell change
during the timestep.

By assigning appropriate values to the guard cells, the fluid elements in the domain
interior can be made to feel appropriate idealized external or reflecting wall conditions as
if there were no boundary at all. When the values of variables assigned to guard cells are
stored in the same arrays as the interior variables, the calculation can be advanced on the
entire grid using a single set of vectorizable finite-difference equations.

To reduce the amount of extra memory required in multidimensional simulations,
guard cells are defined by LCPFCT for only one row at a time. For example, a 20 x 20 x 20
grid uses 8000 memory locations per variable. If this grid is extended two guard cells in all
directions, the resulting 24 x 24 x 24 grid has 13,824 cells, almost a factor of two increase
with no corresponding improvement in resolution! Because LCPFCT redefines the guard-
cell values for each row being integrated, maximum use of the available computer memory
can be made for spatial resolution.

6.1 Representation of Boundary Conditions in LCPFCT

The specific formulation of the boundary conditions used in LCPFCT includes symmetry,
antisymmetry, periodicity, and inflow-outflow and is given by

pe: = Sesc pig + VeBC, (6.1a)

42

1 1
| | L A
: \\ // _j
N L/

- N cell 1, N /]

i cell 1, y cell N « N y]
5 —
- A
- =
- cell1,1 cellN 1 y
L N J
B ‘,/ \\ |
_]

| L 1l 1 11 | | L 1 11 | | | L 1l 1 11 | L

Figure 6.1 A two-dimensional computational domain with one row of (shaded) guard cells.
Values of variables must be specifed in these cells to model various boundary conditions
on the physical system in order that the variable values can be updated on the interior
cells.

or, for periodic boundary conditions,

where p™ indicates the value of one of the conserved densities p(z) at timestep n. Thus
the variable p stands for mass density, momentum density, energy density or a chemical
species density. The subscript I E stands for either I1 or IN depending on which End of
the system is being described, i.e., the boundary at the 1st or the Nth cell. The subscript
G indicates the guard cell for the computational domain, either I1—1 when I E is replaced
by I1, or IN + 1 when I E is replaced by IN.

The quantity Sgpc is the Slope boundary condition factor for Either Boundary
Condition, the first cell boundary condition (when EBC is replaced by BC1), or the
last cell boundary condition (when EBC' is replaced by BC'N). This factor multiplies
the current value just inside the boundary of the computational domain, prg, to get the
linearly varying component of the corresponding guard cell value. The quantity Vgpc is
specified by the user external to the LCPFCT subroutine as a Value added to the guard-
cell value. In a physical situation where the guard cell value does not change regardless of

43

the adjacent value pyg, the slope factor Sppc would be set to zero and Vgpe in Eq. (6.1)
is given the correct value. Vgpc might be the fixed temperature of a hot wall, for exam-
ple, or the value of the mass density flowing into the computational domain at supersonic
speed.

Each of the ideal confined and symmetry boundary conditions treated below and de-
scribed in Table 6.1 and Table 6.2 can be obtained by choosing appropriate values of +1
or —1 for Sgpc and setting the added constant Vgpc to zero. All of the continuitive
inflow-outflow boundary condition cases treated in Section 6.3 in conjunction with Ta-
ble 6.3, Table 6.4, and Table 6.5 can also be obtained by manipulating the values of Sgpc
and Vgpc sent to the LCPFCT program. Equation (6.1) also allows periodic boundary
conditions to be implemented by choosing Pgc = .true. rather than .false. and by setting
both Sgpc and Vgpc to zero. In this case, pR;, is the value of the convected conserved
variable at the Other boundary. NO = I1 when IFE is replaced by IN and NO = IN
when IFE is replaced by I1.

6.2 Boundary Conditions for Confined Domains

Ideal Symmetry or Nonboundary Conditions

The easiest way to treat boundary conditions accurately and consistently is to eliminate
them. This can be done in regions where a symmetry condition exists. The guard-cell
values are predicted exactly from values at corresponding (symmetric) interior locations.
Symmetry conditions can often be applied in the interior of a system as well as at a
boundary. A system may have a natural symmetry plane or line, such as the axis of
an axisymmetric flow. Often a symmetry line is a good approximation to the three-
dimensional system, as in the case of two equal and opposite impinging jets.

Figure 6.2 shows the right boundary and the last few cells of a one-dimensional grid
terminating at a cell interface, as adopted in LCPFCT. This is called a cell-interface
boundary. The edge of the grid in the figure is shaded to indicate a wall and a mirror
(image) system is shown in the several guard cells beyond the boundary. Similar figures
could also be drawn for the left boundary and the first few cells of the grid.

When the given grid locations specify the cell interfaces, the piecewise constant in-
terpretation of the physical variable throughout the domain is natural even though there
are apparent discontinuities at the cell interfaces. In this representation, cells adjacent to
the boundary are complete. The boundary fluxes enter and exit the system at interfaces
where the geometric areas as well as the variable values must be known. Conservation is
ensured by controlling the fluxes at these cell interfaces.

In a piecewise linear representation, the cell-interface locations are generally interpo-
lated from the cell-center locations. The piecewise linear format looks smoother, a major

44

(a) Boundary at Interface /
N
N
N\ | | |
| N _4 | |
| SK |- R——
N
AX) N | | |
N
L L= 1--\N I | |
N
N l I Sl
N X
| _
N —
N | |
cell N-2 N-1 N N+1 N+2 N+3
9 99 999
(b) Boundary at Cell Center A
N
N
N | |
N\ | |
S(X) _9/ § —_ -
— \ | |
A(x) N\ | |
-’/—" \ § | |
) § | | N
N | X
R\ /—
§ — I |
cell N-2 N-1 N N+1 N+2
g 99

Figure 6.2 Different applications of symmetry boundary conditions with guard cells. The
interior of the computational domain is on the left of the shaded band, and the guard cells
are on the right. S(z) is a symmetric function and A(z) is an antisymmetric function. (a)
Piecewise constant representation with a cell interface boundary (used by LCPFCT). (b)
Piecewise linear representation with a cell-centered boundary (not used by LCPFCT).

advantage when the time comes to show results. Most contour-plotting routines interpret
the function values as specified at the grid of points with a linear approximation implied
in the cells between. The resulting contours are visually quite smooth, showing disconti-
nuities in direction but not in value at multidimensional cell interfaces. In fact, piecewise
constant representations are often presented graphically as if they were piecewise linear.

45

Table 6.1. Guard-Cell Formulas: Symmetric (S), Antisymmetric (A), Periodic (P)

Boundary at Interface I11* Boundary at Interface IN+1*
Sri—1=5n Sint1 = Sin
Sri—2 = Sr14+1 Sint2 = Sin-1
Ano1=—-An ArNg1 = —Arn
Arni—o = —Anp Arny2 = —Arn—1
Pri_1= PN Piny1=Pn
Pri_o= PN Prni2 = Priq1

x Throughout LCPFCT boundaries are defined at cell interfaces.

The piecewise constant format is ideally suited for presentation as pixel plots where a
rectangle of color is filled in for each cell of a variable.

In LCPFCT, the position of the cell interfaces are specified rather than cell-centers.
This change from the previous version, ETBFCT, allows us to capture the added simplic-
ity and flexibility of controlling the boundary fluxes exactly. Figure 6.2 shows two fluid
variables, S(x) and A(x). S(z) is symmetric and A(z) is antisymmetric with respect to the
bounding cell interface. In addition to A(z) and S(z), we also consider a periodic function
P(x). Periodic boundary conditions are relatively easy to treat numerically as they are
simple variants of the symmetry conditions in which interior values somewhere are used
to set guard-cell values elsewhere. The values of the variables at cell N 4+ 1 are equal to
those at cell 1 in a periodic system. Periodic boundary conditions arise in circular systems,
such as stacks of turbine blades, cylindrical systems, spherical systems, or in idealized ap-
proximations to small segments of large Cartesian systems. We generally assume that the
guard cells are the same size as the corresponding cells just inside the boundary. Table 6.1
lists simple guard-cell formulas for symmetric, antisymmetric, and periodic variables for
the interface-centered boundaries used in the LCPFCT modules. The formulas include a
second layer of guard cells for completeness though LCPFCT uses only the first row as
shown in Figure 6.1.

When flow with both normal and tangential components is directed against an ideal
wall, the physical conditions in the guard cells can be found from the values in the nearby
interior cells. This is important for bounded Euler flows and for high Reynolds-number
viscous flows, in which the boundary layers are approximated by additional phenomenolo-
gies. Both symmetry and antisymmetry conditions must be applied at such a wall. The

46

lowest-order condition is symmetric, as the density, temperature, and pressure have zero
slope at the wall. The tangential velocity for free slip conditions is symmetric but the
normal velocity is antisymmetric. The guard-cell values of variables for flow against a wall
are given in Table 6.2.

Table 6.2. Free-Slip Flow Confined by an Insulating Hard Wall

Free Slip Hard Wall* Slope Sgpc Value Vegce

Density, Temperature, and Pressure:

PG = PIE S, =1 V,=0
Te =TIk
Pe = Prg

Momentum Parallel to Integration Direction (Perpendicular to Wall):
PGU|G = —PIEV|IE Sp=-1 V=0

Momentum Transverse to Integration Direction (Along Wall):
PGULG = PIEVLIE S =1 Vi=0

Total Fluid Energy Density:
Ec¢ = Erg Sp=1 Ve =0

Species Number Densities:

ni.Gg = N IE Si=1 Vi=0

* Subscript G refers to the guard cell, either cell I1 — 1 or cell IN + 1. Subscript IE
refers to the boundary or end cell of the computational domain, Fither cell 11 or cell
IN, for the particular side of the grid being considered.

Sometimes values of the physical variables on the boundary cannot be determined
directly by applying finite-difference equations with symmetry conditions. It is often nec-
essary to develop modified boundary formulas that depend on the information from the
interior. This allows representation of more physically complex situations such as vis-
cous and turbulent boundary layers. The extrapolation formulas generally use one-sided
relations where interior simulation data are combined with phenomenological exterior or
boundary layer data.

47

Boundary Layers and Surface Phenomenologies

Boundaries often model interfaces between two different phases or two materials. A solid
container with a gas inside may be chemically inert, thermally insulating, absolutely rigid,
and perfectly smooth. If these approximations are acceptable, simplified symmetry and
guard-cell algorithms can be used, as indicated above. Many phenomena, however, depend
on the nonideal nature of the boundaries.

Analyses of numerical boundary layers and other surface models fill books and include
subgrid phenomenologies for representing other types of physics not generally resolved in
the simulation. For example, catalytic reactions at walls and thermal boundary layers can
be modeled by surface phenomenologies. As another example, when heat transfer to or
from a wall is high enough, condensation, evaporation, or even ablation can occur.

Developing such surface phenomenologies requires satisfying the conservation equa-
tions at and through the boundaries. This means that fluxes of mass, momentum, energy,
and enthalpy, which enter or leave the computational domain through the boundaries,
must exactly equal the fluxes to the exterior world. Causality and the conservation laws
provide constraints in these problems. For example, if a thermal boundary layer forms in
a gas next to a cold metal wall, the thermal energy moving from the last cell into the wall
should not exceed the thermal capacity of that cell. If the temperature scale lengths in
the gas are resolved and can be estimated in the metal wall, simple energy interchange
approximations between the interior cells and the exterior are adequate to define suitable
interface fluxes in the LCPFCT modules.

If catalytic surface reactions are occurring, the corresponding boundary condition
must estimate the amount of the reactant that encounters the boundary and evaluate the
probabilities of each possible reaction pathway. When the grid is finely resolved at the
wall so that molecular diffusion scale lengths can be resolved, treating the wall interaction
is relatively straightforward. When the cells are too large, however, the reacting species
seem to be spread throughout the last two or three cells by LCPFCT even though they
should actually be concentrated near the wall. Thus purely surface effects will appear as
volume averages, leading to spurious numerical rates.

A similar effect arises from viscosity. The usual macroscopic treatment of the Navier-
Stokes equation assumes the zero-slip condition, which means that the tangential velocity
at the wall is zero. On a microscopic scale, molecules rebounding from a rigid wall are
assumed statistically to lose memory of their tangential direction prior to collision with
the wall. Thus they have equal probability of scattering forward or backward relative to
the flow of the fluid far from the wall. A thin laminar boundary layer forms near the wall.
From the macroscopic fluid point of view, this boundary layer develops on a very small

48

Figure 6.3 Schematic of a grid where the physical boundary layer is substantially smaller
than the computational cell adjacent to the wall.

spatial scale which is usually very expensive to resolve. Again, a subgrid phenomenology is
often used to satisfy the physical conditions at this rigid surface. When the computational
cells are large, the tangential fluid momentum deficit due to this boundary layer is small
even in the cells adjacent to the wall. Not much fluid is slowed down. However, some fluid
is moving at almost zero velocity, as shown in Figure 6.3.

The normal component of velocity must vanish at the wall on both the macroscopic and
the microscopic scale, a condition satisfied by an ideal symmetry condition in LCPFCT.
However, in a viscous fluid, the tangential flow at the surface must also be zero. This
additional tangential zero-slip condition is a complicating factor requiring explicit repre-
sentation. It also requires resolution of the viscosity and viscous scales or a good “law of
the wall” phenomenology. The velocity at the wall is rigorously zero, and viscosity diffuses
the momentum deficit from the boundary layer into the free flow further from the wall. To
actually resolve this boundary layer, very small cells are needed normal the wall. These
small cells, in turn, impose a severe timestep restriction unless the equations are integrated
implicitly. In an LCPFCT calculation based on a primitive variable formulation, the drag
at the wall can be modeled by subtracting momentum from the fluid near the boundary,
extracting just the right amount of parallel momentum from the two or three layers of cells
adjacent to the wall every timestep so that the velocity at the wall approaches zero. This
mometum deficit can in turn be obtained from some appropriate boundary layer model.

49

6.3 Continuitive Boundary Conditions for Unconfined Domains

Simulating an unconfined flow requires representing an effectively infinite region as a finite
computational domain. The boundary conditions must transmit information to and from
the entire outside world, properly absorbing any signals coming from the computational
domain. Systems coupled to an exterior domain can be rigorously computed on a bounded
domain only when the variables and coefficients in the problem become constant at infinity.
When these coefficients are not constant, approximations are always needed, and there will
be an inaccuracies having nothing to do with the accuracy of the interior methods.

One approach is to map the infinite region into a finite domain by analytically re-
defining the independent spatial variables. The problem with this approach is that finite-
wavelength components are not resolved properly near the edges of the transformed grid.
The spatial resolution of the grid becomes inadequate to propagate information at wave-
lengths of interest (see, for example, Grosch and Orszag, 1977). Another approach is to
truncate the simulated domain at a finite distance and analytically model the influence of
the exterior world on the domain boundaries. The shorter wavelengths can now propagate
up to the boundaries, but they are partially reflected in a nonphysical way if an exact
analytic condition is not available.

We recommend a combination of these approaches. First, the cells should be made
progressively larger away from the central region of interest, thereby pushing the com-
putational problems far away. By stretching the cells near the edges, or equivalently, by
making them small only in regions of interest, the computational domain can be quite
large without a corresponding increase in computer storage. Errors still arise from lack of
knowledge of the solution in the exterior region. However, these affect the solution only
weakly, and only after a delay for the numerical boundary condition influences to reach the
central region. LCPFCT was specifically formulated to allow variable cell sizes, but the
order of accuracy decreases in regions where the cells are changing rapidly. Cell stretch-
ing should be limited to 10-20% per cell in any direction to control these inaccuracies.
Multidimensional cells with large aspect ratios should also be avoided whenever possible.

In a problem with an open boundary, analytic or phenomenological models can be
used to approximate the values of the simulation variables in the region outside of the
computed domain. The coefficients appearing in Eq. (6.1) are then defined using these
models to convey the desired approximate guard cell dependences to the numerical inte-
gration modules. This is done so the most recently computed values near the edge of the
domain can be combined with the auxiliary information about the exterior behavior of
the solution at each stage of the integration. In this way, potentially unstable numerical
extrapolation off the edge of the computational domain is effectively replaced by a more
stable interpolation.

50

Subsonic and Supersonic Inflow Boundary Conditions

Inflow boundary conditions are often as difficult to implement properly as outflow boundary
conditions, even though it would seem that everything is in fact known about the fluid
entering the system. These difficulties arise because there are characteristics which can
move outward at an inflow boundary which is subsonic. Thus we may not actually be in a
position to specify everything about the fluid entering the system. These uncertainties and
errors are particularly important because the fluid entering the system with errors arising
from nonphysical boundary conditions stays resident for a long time. Thus the errors made
on inflow boundaries often build up more rapidly and pollute the solution more completely
than outflow boundary condition errors.

Table 6.3 summarizes useful choices of Sppc and Vgpe appearing in Eq. (3.7) that can
be used to implement subsonic compressible inflow in LCPFCT. Many variations of these
choices are possible and may actually work better than these suggestions for particular
flows or parameter regimes. Nevertheless, because we have been able to perform a wide
range of problems more than adequately with these choice, we recommend at least trying
them in your application.

The physical reasoning behind the definitions made in Table 6.3 is to specify two of the
three inflowing quantities (in one dimension) corresponding to the two fluid characteristics
entering the system. The two quantities chosen are the incoming mass flux and fluid
entropy. This allows the propagation of isentropic pressure pulses (weak acoustic waves)
upstream into the oncoming flow. The pressure of the incoming fluid varies so there is
no pressure gradient at the bounding cell interface. This requires a corresponding change
in the inflow density. This density variation in the inflow in turn requires a velocity
change to keep the mass flux constant. If a pressure pulse from downstream causes the
boundary pressure to go up, the incoming fluid compresses and slows down. The incoming
energy density is computed from the calculated values of the incoming density, velocity,
and pressure (Table 6.3).

This combination of effects appears to mimic a realistic inflow plenum quite well,
preventing numerical effects from driving large, unphysical waves into the system after a
long time.

Supersonic inflow boundary conditions are somewhat simpler since all of the fluid
characteristics are entering the system from the guard cell and can therefore be assumed
to be known. The velocity and pressure at the supersonic inflow boundary are also known

so all of the input to the VELOCITY and SOURCES subroutines are known and the slope
boundary condition factors in the calls to LCPFCT are set to zero.

51

Table 6.3. Inflow Boundary Condition Parameters for LCPFCT (Ppc =.false.)

Subsonic Inflow Conditions* Slope Sgpc Added Value Vgpc

Pressure and Mass Density:

Pe = Pig
1

PG = Vp Sp =0 Vp = Pinflow (Pi];;iw> !
Momentum Density Parallel to Integration (normal to the boundary):

PGY||G = PinflowV|inflow S| =0 V| = pinflowV|jin flow
Momentum Density Tangential to Boundary (along the boundary):

PGUVLG = PinflowV Linflow SJ_ =0 VJ_ = PinflowV Linflow
Total Fluid Energy Density:

Eq=SgEig+ Vg Sg=0 Vi = (f_cl) + 306(vic? +vic?)
Supersonic Inflow Conditions* Slope Sgpc Added Value Vgpc

Mass Density, Total Fluid Energy Density:

PG = Pinflow Sp =0 Vp = Pinflow

EG = Einflow SE =0 VE = Einflow
Momentum Density Parallel to Integration (normal to the boundary):

PGYV|G = PinflowVin flow S =0 Vi = PinflowV|jin flow
Momentum Density Tangential to Boundary (along the boundary):

PGUVLG = PinflowV Linflow SJ_ =0 VJ_ = PinflowV Linflow

x Subscript G refers to the guard cell, either cell /1 —1 or IN + 1. Subscript I E refers
to the boundary or end cell of the computational domain, either I1 or I N, for the
particular side of the grid being considered. The quantities subscripted “inflow” are
specified by the user external to the LCPFCT modules.

Subsonic, Choked, and Supersonic Outflow Boundary Conditions

The difficulty with outflow boundary conditions is nonphysical reflection of characteristics
which should leave through the boundary. In all but the simplest linear problems, the
boundary algorithms can only be approximate because inward and outward propagating
waves and pulses become locally indistinguishable in the nonlinear fluid dynamic equations.

52

Monotone convection algorithms such as LCPFCT can extrapolate the flow parameters off
the edge of the system by setting guard-cell values as described in section (6.1). In two-
or three-dimensional flows, this extrapolation should be done along the flow lines as a
better approximation to following the characteristics though it is usually done normal to
the boundary to comply with the data structure and logic of the split-step approximation
to multidimensions. In this latter case it makes sense to differentiate regions where the
outflow is predominantly normal to the boundary from those where it is nearly tangential.

Extrapolation is often unstable in linear convection algorithms for which positivity
is not guaranteed. One of the major advantages of monotone methods is their ability
to operate stably and reasonably accurately using such simplifications of characteristic
analysis. By breaking the fluid disturbance into its constituent characteristics, however,
and extrapolating each of these out to the guard cells, more stable, accurate outflow
conditions are obtained even for monotone convection algorithms.

Table 6.4 describes simple boundary conditions for a fluid flowing off the edge of a
finite computational domain. Used with a monotone method, these formulas for guard
cells take into account the continuity of flow in the vicinity of the boundary. The quantity
T is a characteristic time for relaxation of the pressure to its ambient value at infinity, for
example a characteristic system size divided by the average sound speed. The lowest-order
extrapolation for guard-cell values uses the adjacent cell values for the corresponding guard
cells. That is, 7 = co. The next higher-order extrapolation uses the two cells just inside the
boundary to extrapolate linearly to the guard cells. The values of the variables at or near
infinity, such as p., feed information about the external world into the computational
domain. Without these terms, that is, with 7 = o0, a simulation cannot relax to the
asymptotic pressure, and this leads to growing errors.

Conditions for Flow Roughly Parallel to an Open Boundary

There is a final case to be considered which occurs when the boundary of the computational
domain is physically unconfined and the flow at infinity is roughly parallel to the boundary.
This is neither the inflow nor the outflow situation as described in the two subsections
because the actual fluid velocity perpendicular to the boundary is neither predominantly
inward nor predominantly outward. Depending on fluctuations and sound waves near the
boundary the fluid could either “breathe” in or out so the relative value of the tangential
velocity is zero and yet the expected momentum and kinetic energy of the fluid are quite
large. In this case the LCPFCT routines should be employed with the boundary condition
parameters as defined in Table 6.5.

53

Table 6.4. Outflow Boundary Condition Parameters for LCPFCT (Ppc =.false.)

Subsonic & Supersonic Outflow™ SEBC VeEBC

Outflow Interface Pressure and Velocity:

Vljinter face — U||IE[1 - %] Pinterface = PIE[1 - %] + %Poo
Mass Density:

pc =S, pie +Vp Sp:[l_%] Vp:%Poo

where 7 is the problem-dependent time constant for relaxation of p to pso

Momentum Density Parallel to Integration (normal to the boundary):

pavic = S\previie + V) S =[1-% Vj=0
Momentum Density Tangential to Boundary (along the boundary):

pavic =S1previre + Vi Sy =[1- £ V., =0
Total Fluid Energy Density:

Eq=SgEig+ Vg SE:[l—%] VE:%EOO

Different values of 7 may be appropriate for density, momentum, energy, etc.

Choked Outflow Conditions* SEBC VEBC

Choked Interface Pressure:

Pinterface = P]E
Choked Outflow Interface Tangential Velocity:

1/2
'YPIE> /

U|linter face = Usinter face = (

Mass Density, Total Fluid Energy Density:

pc =Sy pre +Vp S, =[1— A V, = At
Eq=SgEie+VE Sp=[1— A&t Ve = Atp

T T

Tangential and Parallel Momentum Densities (as above):

x Subscript G refers to the guard cell, either cell 1 — 1 or IN + 1. Subscript IE
refers to the boundary or end cell of the computational domain, either I1 or I N, for
the particular side of the grid being considered. The quantities subscripted “oo” are
specified by the user external to the LCPFCT modules and represent the ambient
fluid variables far from the boundary in question.

54

Table 6.5. Parallel Flow Open Boundary Parameters for LCPFCT (Ppc = 0)

Parallel Open Boundary Flow* SeBC VeEBC

Tangential Velocity and Pressure at Interface:
VUljinter face — V|| IE Pinterface = Prg

Mass Density, Species Number Densities:

pc =S, pre+V, S,=1[1- %] V, = %pemternal
where 7 is the relaxation time constant of p to pesternal

Momentum Density Parallel to Integration (normal to the boundary):

PG| G = PIEV|IE Sy =1[1-2 Vi = 2 pesternatVjesternal
Momentum Density Tangential to Boundary (along the boundary):

pPULG = PIEVLIE S1=1 Vi=0
Total Fluid Energy Density:

Eq=SgEp+ Vg Sp=[1- 21 Vi = 2t Eepternal

Different values of 7 may be appropriate for density, momentum, energy, etc.

x Subscript G refers to the guard cell, either cell /1 —1 or IN + 1. Subscript I E refers
to the boundary or end cell of the computational domain, either I1 or I N, for the
particular side of the grid being considered. The quantities subscripted “external” are
specified by the user before calling the LCPFCT module and represent the value of
the fluid variables external to the boundary in question.

7. ADDITIONAL INFORMATION

This section discusses some additional information about the use of the LCPFCT package
which may be of use in some situations and which should help to extend a user’s un-
derstanding of the algorithms and the implementation presented here. Topics considered
are additional routines, more about boundary conditions through the use of the subrou-
tines ZEROFLUX and ZERODIFF, flexibility in choosing interface averages, and a brief
discussion of things an advanced user might want to try with the flux-correction formula.

There are a several additional subroutines in the LCPFCT package which provide
flexibility but do not necessarily have to be fit into the normal sequence of FCT calls.

RESIDIFF (DIFFA) allows the user to add a small amount of residual diffusion to
the solution by making the effective antidiffusion coefficients {y; 1} (MULH in

55

FCT_VELO) be slightly smaller that the diffusion coefficients {v;_1} (NULH). To
do this in LCPFCT, the magnitude of the sign function array, called FSGN in Do
2, need not be exactly unity. A smaller value, for example the default value 0.999, is
transferred to the antidiffusion coefficients and allows a slight residual diffusion that
helps maintain smoother solutions for systems of gas dynamic equations. DIFF'1
is carried in common block FCT_MISC and can be changed by a call to subroutine
RESIDIFF, whose only argument is the new value of DIFF'1. The value of DIFF'1
stays at the newly set value until a new call to RESIDIFF is made. This facility is
employed in a couple of the test problems. The value of DIFF'1 is defaulted to 0.999
in a block data initializing routine and values less than 0.99 are not recommended.
In some applications where very small Courant numbers are expected, this may lead
to appreciable numerical diffusion in some regions and the user may want to be set
DIFF1 to unity by calling RESIDIFF (1.0000), as is done in the constant velocity
convection tests reprinted in Appendic B and discussed in the next section. This call
can also be used to deliberately introduce some linear second-order diffusion to mimic
the effect of viscosity. Since the nonlinear flux correction will leave additional dissi-
pation in some regions, however, the user must remember that the residual diffusion
may not be all that is present.

COPYGRID (MODE, I1, IN), with MODE =1 is used to put aside a copy of all the
grid variables generated by the last call to MAKEGRID. The arrays are copied into
another named common block called OLD_GRID for subsequent reuse after some or
all of these values may have been changed. Calling COPYGRID with MODE = 2
then subsequently restores all the values from cell I1 to cell IN including the first
and last interfaces. While MAKEGRID could always be called to reset the grid,
restoration from the copied values could save considerable computation — particularly
if the computation of the interface locations, areas, or cell volumes is expensive. An
example of where this is useful is a two-dimensional simulation where the grid is
moving. Each of the NY rows needs to have MAKEGRID called before the half step
and NEW_GRID (below) called to change the grid locations to those appropriate to
the end of the timestep. COPYGRID could then be used to restore the grid to its
condition before the most recent call to NEW_GRID and prior to beginning integration
of the next row. It is also used in conjunction with SET_GRID to calculate cell volumes
more efficiently when angular coordinates are being used.

NEW_GRID (RADR, I1, INP) performs the same function as MAKEGRID but is
somewhat faster because the old values of the cell interface locations, RADHQO, and
all the variables which depend only on RADHQO are assumed unchanged since the
last call to MAKEGRID. This means that a number of quantities do not have to be
recalculated. This facility is useful, for example, when a moving grid at the end of a

56

complete timestep differs from the grid at the end of the half step but both integrations
start from the same ‘old’ grid.

SET_GRID (FACTOR, I1, IN) is used when a multidimensional FCT model has one
of the dimensions as an angular coordinate. In two dimenions it allows more efficient

treatment of terms of the form
10p

90

where r and 6 are the orthogonal radial and angular coordinates. For such a term,

(7.1)

a cell area can be treated as a constant independent of radius, and a cell volume is
proportional to radius, A; = r;(6; 1= 91’—%), where r; is the radius of the jt" row
and 0, 1 is the angle of the i*" cell interface. In spherical coordinates the angle @
is replaced by ¢ = cosf with 0¢ = sinf06 to obtain the equivalent ‘Cartesian-like’
coordinate. The integration in the 6 direction is performed with ALPH A set equal
to one in the call to MAKEGRID. This call is located outside the loop over radius.
Provisional cell volumes which are computed as the differences of the 6 ’s are stored
in the arrays LOP and LN P and are contained in common block OLD_GRID when
COPYGRID is called with MODE = 1. Inside the loop over radius SET_GRID must
be called with the argument RADR being the mean radius of the cell j and with I1
and I N being the first and last cells to be integrated. SET_GRID will multiply the

(072" —07")) terms by the current cell radius r;. This includes the radial effect in
2 2

the cell volume calculation with only a single multiply for each row. This provides
significant savings in the computational effort for obtaining cell volumes for each j*"
row.

In Section 5 we discussed two routines called ZEROFLUX and ZERODIFF which
modify the velocity dependent coefficients for certain specific boundary conditions where
no fluxes or no diffusion across certain interfaces can be allowed on physical grounds.
These requirements usually apply at the ends of the computational domain but there are
circumstances, for example at a Lagrangian interface between two different materials or
phases, where no flux of mass can be allowed in the frame of reference moving with the
fluid. In this case ZEROFLUX (Interface) is called where ‘Interface’ is the Index of the
interface separating the two phases, for example air and water. ZEROFLUX is also used
at ideal solid walls to ensure that absolutely no flux into or out of the wall is allowed. By
calling ZEROFLUX just before a particular continuity equation is solved, fluxers through
the interface are permitted for all of the previously integrated equations.

ZERODIFF was designed to treat a slightly different problem: it turns off the diffusion
and antidiffusion fluxes at chosen cell interfaces without affecting the convective fluxes.
This can be used where there is a physically correct convective flux but where the numerical
diffusion and /or antidiffusion would result in non-physical behavior. This routine should be

57

used for supersonic outflow conditions where the diffusion (or antidiffusion) might otherwise
move some mass, momentum, or energy upstream in the flow. At inflows where the
incoming fluxes are known, the guard cell values may not be exactly equal to the computed
values just inside the mesh. There ZERODIFF is also used to ensure that the diffusion and
antidiffusion terms can not change the prescribed fluxes entering the system. Examples
using these routines are seen in the test problems and indicated in Tables 5.6-5.8.

As indicated repeatedly in the text, the LCPFCT routines rely on interface averaged
quantities as inputs in several places. There is a great deal of freedom in computing these
averages from the cell values on either side of the interface. In calculating the interface
velocities, for example, the simple calculation,

Vi + Vi1
2)

(7.2)

N|=

could as well be computed as

_ PiVi + Pi—1Vi—1
U’ifl = .

y =P (7.3)

This density-weighted average in Eq. (7.3) is equivalent to calculating the velocity at the
interface from the average momentum divided by the average density.

There are infinitely many choices for these averages and there seems to be no com-
pelling reason why {p;_1}, {v;_1}, {F;_1}, and {(Pv);_1} all have to be computed the
same way. In Appendix C, Subroutine GASDYN performs these averages for LCPFCT
Tests #2, #3, and #4 in yet another way. In the Do 200 loop, an inverse density weight-
ing,

L= piPi1 + /%'—11Di7 (7.4)
: pi + pi-1

is used not only for the pressure at the interfaces but also for the velocities and the pressure—

P.

71—

velocity product. This is physically equivalent to calculating the pressure at the interface
from the average of the squares of the sound speed in the two adjacent cells. The higher
the sound speed the faster pressure is communicated so this choice in Eq. (7.4) makes as
much physical sense as the simple average in Eq.(7.2) or the density weighted average in
Eq. (7.3). In GASDYN the equations implementing the simple average of Eq. (7.2) are
also included as comments following the Do 200 loop in case the user wants to do a little
experimenting.

In Subroutine VELOCITY there is also appreciable flexibility possible in choosing
{vi_1} and {p,;_1}, the diffusion and antidiffusion coefficients NULH and MULH. The
calculation involving SCRH is not strictly necessary but seems to improve the quality
of the solutions of the convection test problem (Appendix B) a little without degrading

58

the quality of the other three test problem solutions. SCRH subtracts a very small
fourth-order velocity correction from the diffusion and then increases both the diffusion
and antidiffusion by the same small second order amount. This latter correction has no
effect on the residual diffusion of the algorithm but changes the pahse errors slightly,
improving and symmetrizing the solutions for all three convection profiles. By setting
SCRH identically to zero, the user can verify that the absolute error measures of the
convection problems do indeed increase.

In addition to the straightforward application of the LCPFCT routines, there are some
tricks which help to give better solutions when the numerics are being stressed very hard.
One of these is the use of minimum values. It is generally useful if the pressure is limited
from below to be no smaller than some minimum value in computing the source terms for
the momentum and energy equations in gas dynamic problems. This value is generally
chosen to be one order of magnitude less than the smallest pressure that is physically
expected. This prevents extreme undershoots in pressure occuringin problems involving
strong shock waves. Also, when computing the velocity by dividing the fluid momentum
by the density it is sometimes helpful to limit the value of the density used in the divisor to
some minimum value. These ad hoc fixes are helpful because while the primary variables
being integration by LCPFCT are guaranteed to be monotonic, the derived quantities such
as velocity and pressure may not be monotone in the vicinity of steep gradients such as
occur naturally at shocks. The effect of the use of these minimum values is highly localized
since global conservation of the conserved quantities is still being maintained.

59

8. TEST PROBLEMS

In this section we describe four test problems that illustrate the application and capabilities
of LCPFCT and provide benchmarks of the algorithms. A complete listing of the LCPFCT
subroutines is given in Appendix A. The four test programs and selected reference outputs
are given in Appendices B, C, D, and E.

1. The first test program, Appendix B, shows tests of linear convection with a fixed
uniform velocity. Three different density profiles are convected, a discontinuous square
wave profile, a semicircular profile, and a Gaussian peak profile. The program uses
either the LCPFCT routine or the CNVFCT routine for this test; they are identical
in the limit that the velocity field is constant.

2. The second test program propagates an ideal, one-dimensional, Rankine-Hugoniot
shock through a gas with v = 1.4. This program, listed in Appendix C, demonstrates
the coupling of several continuity equations to solve a standard gasdynamic problem.

3. The third test program, Appendix D, simulates a one-dimensional exploding di-
aphragm (in a shock tube). This problem shows another example of gasdynamics
with different boundary conditions and illustrates FCT’s dynamic grid features.

4. The fourth test program is two dimensional and simulates the flow following the
bursting of a diaphragm halfway up a finite length barrel. This program, in Appendix
E, demonstrates the time splitting multidimensional implementation of LCPFCT on
a geometrically complex domain and uses a simple extrapolated outflow condition.

For each test problem, we provide the driver program and selected printed outputs to
five significant digits. This provides the basis for a fairly complete detection of any errors
which might creep as the program is transferred, copied, or due to any Fortran or computer
system incompatibilities. The five-digit printout comparisons should typically be adequate
for validation on any computer with 32-bit or greater accuracy.

8.1 Constant Velocity Convection — LCPFCT Test #1

The first test program convects three different density profiles across a uniform grid at
a constant velocity with periodic boundary conditions. The three density profiles chosen
are a square wave (top-hat profile) 20 cells across, a semicircular density profile with a
radius (called WIDTH) of 10 cells, and a Gaussian peak with a characteristic half width
of five cells. These are all standard profiles for comparing numerical convection algorithms.
The system length, N.X, is 50 cells, the constant convection velocity, VELX = 1.0, and
the calculation is carried out for M AX ST P = 500 timesteps with DT = 0.2 and DX =
1.0. Thus the nondimensional Courant number, ¢ = VELX x DT/DX = 0.2, is 40%
of the maximum allowed by this FCT algorithm. The standard run is long enough for

60

12 T T T T
2
‘»
c
o
[a]
12 T T T T
1.0 | E
0.8 —o— step 000 i
2 —0— step 250
‘0 0.6 |- 4
% —=e— step 500
[a)
0.4
0.2
0 10 20 30 40 50
1.2 T T T T
1.0 | J
0.8 - —o— step 000)
2 i —o— step 250
‘0 0.6
S —&— step 500
[a]
0.4
0.2
0 10 20 30 40 50

X at cell interfaces

Figure 8.1 Results of the convection tests with LCPFCT on a) square wave profile, b)
circular arch profile, and c¢) gaussian peak profile after 250 and 500 timesteps with a
Courant number of 0.2.

61

the density profiles to travel across the mesh twice, coming back to the initial position
each time because periodic boundary conditions are used. This type of calculation with
periodic boundary conditions is a good test of the algorithm’s numerical fidelity because
the successive profiles should exactly overlay each other.

Listings of the program used to generate these results along with the printed output
at steps 125 and 500 are given in Appendix B. The printed solutions labeled as ‘exact’ at
step 500 are also the initial conditions for each of the profiles. These results for the three
different test profiles are also shown in Figure 8.1 for steps 250 and 500 overlaid on the
initial conditions. The quantities marked ‘absolute error’ at the bottom of the printouts
are the sum of the absolute values of the differences between the computed solution and
the exact solution normalized by the conserved sum of the density values for each of the
profiles. The exact (analytic) solution is found by following a translating grid on which the
solution remains exact and performing a simple numerical integration to get the correct
average of the chosen profile over each cell.

1.2

1.0

0.8 ‘ —o— step 000
3| —0— step 250

0.6 |
—e— step 500

Density

0.4

0.2

0 10 20 30 40 50

X at cell interfaces

Figure 8.2 Convecting the square wave profile using LCPFCT with enhanced antidiffu-
sion. The values of the coefficients MULH in common block FCT_VELO have been in-
creased 2%. The density profile after 250 and 500 timesteps of convection with a Courant
number of 0.2 is overlaid on the initial conditions.

A linear convection algorithm has amplitude, phase, and Gibbs errors which cause
the numerical solution to deviate from the expected theoretical solution. Since FCT is
intrinsically nonlinear, these three types of errors are mixed together, reappearing as profile
‘rounding,” ‘terracing,” and ‘clipping.” The solutions shown in Figure 8.1 illustrate these
three different types of error. Because of the particular test profiles chosen, each of these
types of error is best illustrated by a different profiles. The corners of the square wave are

62

‘rounded’ somewhat to generate a modified profile that propagates essentially unchanged.
In the semicircular profile, a small ‘terrace’ forms around cell 25 where phase errors deform
the shape of the convected profile somewhat until a new maximum begins to appear where
the slope is relatively small. This new extremum is prevented by the antidiffusive flux
limiter, leading to the terrace. In the gaussian peak problem, the rather sharp peak is
‘clipped’ off. The diffusion stage reduces the height of the two highest points and then the
flux corrector prevents the antidiffusion flux from reconstituting these peaks.

12 T T T T

1.0 F

0.8 —o— step 000
2 —o— step 250
k%) 0.6
o —e— step 500
[a]

0.4

0.2

0 10 20 30 40 50

12 T T T T

1.0 f

0.8 1 —o— step 000
2 —o— step 250
‘© 0.6
2 —e— step 500
[
o

0.4

0.2

0 10 20 30 40 50

X at cell interfaces

Figure 8.3 Results of the convection tests with LCPFCT on the, a) semicircular density
profile, and the b) gaussian peak density profile after 250 and 500 timesteps with a Courant
number of 0.2. The values of the coefficients MULH in common block FCT_VELO have

been increased 2%.

It is difficult to do anything about the phase errors at short wavelength which lead,
in particular, to the terracing effect but it is tempting to try to reduce the rounding and

63

clipping by modifying with the amount and conditions of the flux-correction procedure. For
example, the antidiffusion coefficients in the LCPFCT algorithm can be increased slightly
by multiplying the NX +1 values of y; ;1,2 (MULH) by a value slightly larger than unity.
This makes the linear algorithm slightly unstable but improves the fidelity of physically
discontinuous or nearly discontinuous solutions significantly, as seen in Figure 8.2 for the
square wave profile. In Figure 8.2 the number of zones in the numerically approximated
discontinuity is 2 or 3 while it is 4 or 5 in Figure 8.1a. Further there is virtually no
additional rounding evident between steps 250 and 500 in Figure 8.2.

Some monotone methods employ ‘contact surface steepeners’ such as just described in
regions of flow where contact surfaces can be identified. These techniques should be used
with caution, however, because their long term numerical stability depends totally on the
nonlinear action of the flux corrector. Figure 8.3 shows the results of using this approach
on the second and third profiles which are not as discontinuous as the square wave. It
can be seen that enhancing the antidiffusion trys to turn even smooth profiles into square
waves. The terracing is enhanced significantly in Figure 8.3a and the clipping is much more
extreme in Figure 8.3b. The bases of the profiles are pulled in and the tops broadened out
while still conserving the total integral under the curve and the mean position of the fluid.

8.2 Progressing One Dimensional Gasdynamic Shock — LCPFCT Test #2

RHOAMB
VELAMB
PREAMB

diaphragm

i=1 i=MX+1 i = NX+1

Figure 8.4 Schematic diagram showing the one-dimensional geometry and key initial
parameters for the Progressing Shock Test and the Bursting Diaphragm Test.

In one dimension the equations of ideal gasdynamics can be written as three nonlinearly
coupled continuity equations. In Section 4 we showed how LCPFCT can be used to solve
each of these continuity equations through a structured sequence of calls. Appendix C,
which contains the Fortran program conducting this progressing shock test, also includes
a subroutine called GASDYN which captures this series of calls to LCPFCT and its sup-

64

T T T T
2- Bl
1 F
2 gp—°*t= 00
[8)
o ——t= 25
(]
> -1l ——1t= 50
—e =
b t 7.5
—=— t = 10.0
-3 &oo0oovo0oo)
-4 1 1 1 1
0 10 20 30 40 50

X at cell interfaces

Figure 8.5 Velocity profiles at intervals of 50 timesteps from the LCPFCT Progressing
Shock Test — Problem #2. The shock velocity, V0O, was chosen as 3.0 so the shock moves
7.5 cells in each interval.

porting routines. GASDYN can be used in a number of circumstances including Tests #3
and #4 below.

Figure 8.4 shows the initial configuration for a progressing shock problem. The shock
moves in the positive X direction with a velocity V0 = 3.0. The fluid, entering the system
on the right at velocity VELAMB = —2.9161, is a Mach 5 flow relative to the oncoming
shock. The ambient (preshock) density is RHOAM B = 1.0 and the corresponding pressure
is PREAM B = 1.0. Inside the shocked region, initialized to the left of interface 11 in this
case, the fluid conditions are VEL_IN = 1.8168, RHO_IN = 5.0, and PRE_IN = 29.0.
In this progressing shock test program and the one for the bursting diaphragm discussed
below, a fourth variable RV TN, denoting an unused transverse momentum, is initialized
to zero. This variable is important in two-dimensional flows and allows GASDYN to be
used as well for Test #4, the two-dimensional “muzzle flash” problem. The boundary
conditions chosen are of type 4 for the calls to GASDYN, meaning that fixed, known
values are enforced on the guard cell variables and thus allowed to enter the computational
domain. The system is NX = 50 cells long and DELTAX = 1.0. The timestep DELT AT
is fixed at 0.05.

The ideal propagating shock is self steepening so its computation using LCPFCT
reaches a limiting profile as it moves across the grid. This profile is physically correct
and numerically stable though it is not completely steady in time. Since the location
of the shock relative to the cell center changes from one step to the next, the profile
changes slightly. Small fluctuations arise as the shock progresses from one cell to the next,

65

depending on the one or two cells involved in the transition from the pre-shock to the
post-shock conditions and exactly where in the cell the shock resides.

The outputs reproduced in Appendix C, step 0 (¢t = 0.0), step 150 (¢ = 7.5), and step
200 (t = 10.0), show that the pressure and velocity have small nonmonotone undershoots
of order 0.1% just in front of the shock. This error is so small that the effect cannot be
seen in Figure 8.5. It occurs because the shock is so steep that the energy density and
momentum density transitions only have to get a little bit out of phase for quantities
derived from two or more of the primary conserved variables, like the pressure or the
velocity, to show structure not seen in the primary variables themselves. There has been a
substantial amout of work over the years concerned with such issues for algorithms where
the effects are orders of magnitude worse. In most circumstances where the unwanted
effects are very small, as in the cases here, the cure can be worse than the disease.

8.3 One-Dimensional Bursting Diaphragm Problem — LCPFCT Test #3

The bursting diaphragm test, also illustrated in Figure 8.4, solves the ideal one-dimensional
equations of gas dynamics for the classical shock tube problem: an initial condition in which
two uniform perfect gases at rest are separated by a diaphragm which breaks cleanly and
instantaneously at time zero. The region to the left of the interface at M X + 1 = 61
consists of a gas at 10 times the pressure on the right but at the same density. That
is, RHOAMB = RHO_IN = PREAMB = 1.0, PRE_IN = 10.0, and VELAMB =
VEL_IN = 0.0. The system has NX = 100 cells with DELTAX = 1.0 initially. In this
test, the grid is adaptively changed in time as described below.

The boundary conditions chosen are of type 1 for the call to GASDYN specifying
ideal hard reflecting end walls. Since the gridding is such that the solution does not reach
either end of the computational domain and the external solutions on the right and left are
constant states, this choice is not unique or even important. The timestep was held fixed
at DELT AT = 0.05 because the grid variations are relatively small. Tabulated results are
printed at steps 0, 100, 200, and 1600 in Appendix D. These include times before and after
the grid stretching is started and show the approach to the expected theoretical similarity
solution. Listings of the test program are also given in Appendix D.

Figure 8.6a shows the computed density profiles (RHON) at times 5.0 (step 100), 7.5
(step 150), and 10.0 (step 200) before the grid has begun to expand adaptively with the
solution. This initial transient has four flow characteristic surfaces forming from the single
diaphragm discontinuity and separating. They bound three distinct broadening regions
which only become well resolved after some time. In the figure the rightmost region, lead
by a shock and followed by a contact surface, moves off to the right and is centered around
X = 20 at time 10.0 when the grid stretching is begun. Figure 8.6b shows four of the

66

3'0 _' I I I I L L L
2.
2
2 2.
b
O
w 1.57
n L
© '
> 1.
05t | | : Smarman . |
-50 -40 -30 -20 -10 0 10 20 30
X at cell interfaces
; —8— t = 10.0
2.5 .
S o=t = 20.0 :
> f
@ 2.0F Ottt = 40.0 B N
8 (st & t = 80.0 ¥ i
o
cs IIIIII.IIIIIIIII on:A :
= 10 P
- k"!‘“"“‘&tcngg\E.SE!lII|||||l|ll|l||||||||l|lll|||||ll.'“"‘

-60 -50 -40 -30 -20

-10 O

10

Similarity Variable

Figure 8.6 Evolution of the mass density profile for the bursting diaphragm problem,
LCPFCT Test #3. a) Initial transient evolution on a ‘fixed’ grid. b) Evolution on an
expanding grid showing approach to the analytic similarity solution.

density profiles at times 10.0 (step 200), 20.0 (step 400), 40.0 (step 800), and 80.0 (step
1600). At the beginning of this sequence (step 200), the grid begins to linearly stretch at
a rate of V/X = .0775 which causes the various characteristic surfaces in the flow to come
to rest in the stretching grid. A look at the program in Appendix D will show how this is

implemented using MAKEGRID.

67

w &

N

Momentum Density
=

-60 -50 -40 -30 -20 -10 O 10 20 30 40

Energy Density
e
O N A O 0O O N

-60 -50 -40 -30 -20 -10 O 10 20 30 40
Similarity Variable

Figure 8.7 a) X momentum density (RVXN) and b) energy density (ERGN) shown at
timesteps 200, 400, 800 and 1600 after grid expansion has begun. The horizontal axis is
the similarity variable acheived by expanding the grid.

Figure 8.7 shows that same convergence of four computed solutions toward the ex-
pected similarity solution for the momentum density (RVXN) and the energy density
(ERGN). The terracing exhibited by the early solutions in the rarefaction wave region
to the left of the initial location of the diaphragm has almost disappeared as the solution
progresses. Since the grid was already being moved in this test, we superimposed a small
oscillation from one step to the next whose amplitude is controlled by DX _OSC' in the

68

program, here chosen rather arbitrarily as 0.125. This flexibility to move the cells around
rather arbitrarily, as long as interfaces don’t cross each other, is very useful in Lagrangian,
quasi-Lagrangian, and adaptively gridded “sliding rezone” calculations.

8.4 Two-Dimensional Muzzle Flash Problem — LCPFCT Test #4

T ,
outflow |
| .
| 1
, |
! |
axis of RHOAMB I
symmetry |
| VELAMB :
PREAMB !
| |
21| oo :
| 1
|
| ideal '
|
| solid |

\ e outflow
- |
VEL_IN |
J PRE_IN !
1 |
1 | —» 16 26 solid wall 41

Figure 8.8 Diagram of the geometry and initial conditions of the two-dimensional muzzle
flash problem — LCPFCT Test #4. The cylindrical wall (“muzzle”) is 1.0 cm thick and
2.0 cm long. The pressure ratio behind the diaphragm is 1000:1 and the density ratio is
100:1.

Here we show how timestep splitting is used to solve the ideal two-dimensional equations
of gasdynamics with the LCPFCT modules. This listing in Appendix E shows how to
set up the calls to the grid subroutine and impress boundary conditions for a diaphragm
problem like Test #3 but this time in a cylindrical barrel. Figure 8.8 shows the geometric
configuration and dimensions of the distinct regions in this problem. After the shock has
formed just above the diaphragm at interface J = 11, it progresses for a short distance in
a restricted one-dimensional manner and then flashes out of the muzzle and expands in
an axisymmetric manner. Simple outflow boundary conditions, BC_OUTF, are applied
to the upper and right boundaries at interfaces J = 41 and I = 41 respectively. The
lower boundary at interface J = 1 and the axis at interface I = 1 were solved with
reflecting boundary conditions, BC'_W ALL and BC'_AXIS respectively. The calculation
is performed on a 40 x 40 uniformly spaced rectangular grid with DR = DZ = 0.1. The
equations are not integrated inside the ideal solid cylindrical wall shown in Figure 8.6.

69

The initial conditions were formed by setting the entire mesh to an ambient values,
RHOAMB = 0.00129, VELAMB = 0.0, and PREAM B = 1.013 x 106, for the density,
velocity and pressure. We then created a region 10 cells high inside the barrel and below
the diaphragm with RHO_IN = 0.129 and PRE_IN = 1.103 x 10°, one hundred and one
thousand times ambient respectively. The fluid everywhere was assumed to be a perfect
gas with v = 1.4.

1111111111222222222233333333334
]2?4152890123456789012345678901234567890

40 FFFEE DCBA+—AAB +
39 EE D BA+—AAB +

38 GGGG F EE DC A+— ABBB+

37 GGEGG FF EEDC A+—++ BBB+
36 GGGGGGG FF EDD A+ ++ BBB+
35 GGG FFEED AA+ +++ABBBB

A GG F ED BA++++ABBB

33 G F ED A+++—+BBBA

R F DCA +—

31 FEDCBA — +

0 GFFEDCBA +—

29 HHIleHH GGFED —+A A

28 HHHHHHHH G EDBA —+A

27 HHHHHHHHHHG EDCB+— AA +
26 HHIHHHHHHHH G FED B —+AAAAA
25 HHHHHHHHHHH G FED B —+ AAAA+
24 HHHHHHHHHHHHGED — AAAAA
23 HHHHHHHHHHHH EC— AAAAA+

1111111111222222222233333333334
1234@890123456789012345678%1234567890

40 AAAA ++
39 BBd% AAAA +
38 BBBBBBBB AAAA ++
37 BBBBBBBB AAA ++
36 BBBBBBBB AA ++
35 BBBB AA ++

A BBB AA ++

33 CC BBBAA+

3R CCC BBB A++
31 CCCC BB A+
30 CCCCC BBA+

29 CCC BBA+
8 cocccea———-| step 400

27 Dgg CCCBBA
26 DDDDDD CC BA+
25 DDPDDDDD CCBA+———

24 DDDDDDDDDD CBA+——
23 DDDDDDDDDDD CB

2 HHG 22 DDPDDDDDDDD C+—

2 C—+AAAA | 21 'DDDDDC

20 ek HHHHHHH 20 DHHHHHHHHHH

19 MHHHHHHI- 19 | AHRHHHHHR

R step 150 7| A

16 b | 16 HHHHHHHHHH

15 wesssssssssssHHHHHHH 15 HHHHHHHHHH

14 MHHHHHHI- 14 EEEEEEEEEEEEE HHY ey

13 HHHHHHH | 13 EEFEEEEEEEEEEEEHI AR

12 wssrpmssssssHHHHHHH 12 EEFEEEEEEEEEEEEH] R ARARaRS

11 b HHHHH 11 EFFFEEEEEEEEEEEHI -
10w HHHHHHHH | 10 EFFFEEEEEEEEEEEHI -
9 MHHHHHHH 9 EEFEFEEEEEEEEEEHH -
8 HHHHHHH] | 8 EFEEEEEEEEEEEEEHH -
§ s HHHHHHH | 6 EEEEEEEEEEEEEEEHH Nsssssssssedil
5 kst HHHHHHHI 5 EEE’EEEEEEEEEEEEHI’ -
4 & O O 4 EEE H 0000000 b

3 wannsssssHHHHHHHHHH 3 EFEEEEEEEEEEEEEHHHHHHHHHHHH-H-H-H-
2 ’J’W HHHHHHHHH 2 EEEFEFEEEEEEREEHHHHHHHHHH

1 et HHHHHHHHH 1 EEEEEEEEEEEEREEHHHHHHHAHA .+t

Figure 8.9 Character contour plots of the solution to the two-dimensional muzzle flash
problem at two different times a) step 150, and b) step 400.

The calculation is performed in R-Z cylindrical geometry by specifying TALFR = 2
rather than 1 in the appropriate call to MAKEGRID for integrations in the radial direction.
In the way LCPFCT is implemented, the first row and first column are one half zone from
the reflecting boundaries. This facilitates conservation checks and simplifies application
of the boundary conditions since the the first row and column represent a full cell and
conservation can be enforced by requiring the fluxes through the boundaries to be zero.
Results are shown as printouts of two lines through the two dimensional arrays at steps 150
and 400. A simple variable timestep capability is included with this test to show one easy

70

way to do this. The square root of the energy divided by the density gives a reasonable
approximation to the fastest characteristic speed in the problem. Therefore the maximum
of this speed over the grid is used to estimate a suitable timestep for the next step of
integration.

The listing of the driver program and the printed results are in Appendix E. Fig-
ure 8.9 shows two simple character contour plots of the density computed by this model
for timesteps 150 and 400 at times 25.06usec and 75.06usec of the calculation respectively.
In Figure 8.9a the flow has just left the muzzle and is reaching the upper boundary. This
shows flow exiting the computational domain with no appreciable numerical reflection
through the implementation of boundary condition 2. At the later time of Figure 8.9b,
the extrapolated outflow conditions at the radial boundary has also come into play and is
showing no reflection of a purely numerical origin. This simple outflow boundary condition
is implemented in subroutine GASDYN.

Since the GASDYN subroutine provided for the earlier LCPFCT Test #2 and Test #3
included provision for a second transverse momentum RVT N, it can be used as well for this
two-dimensional problem. In a production environment, it is best to have different versions
of GASDYN to reduce the confusion in the programming and unnecessary statements and
tests in the Fortran related to directions and variables not being used. Here however,
using the same code reduces the number of different programs while showing just how
straightforward this approach to fluid dynamics is. The extension of this test program and
the subroutine GASDYN to three dimensions is also a rather easy modification. Indeed,
the simplicity and efficiency of FCT algorithms has led to their ready adaptation to efficient
parallel processing, e.g., Gustafson et al. (1988) and Oran and Boris (1991).

Since FCT is designed to solve general continuity equations, complex fluid dynamic
interactions involving rotational flow and turbulence can be simulated as easily as the
transient shock and blast problems used as examples here. Furthermore, extensive tests
performed with FCT and monotone algorithms, for example by Edgar and Woodward
(1991), and Boris et al. (1992), indicate that these methods behave as large eddy models
are expected to behave for high Reynolds number flows. The flux-correction procedure adds
a local, solution-dependent dissipation to the overall fluid dynamic simulation much as an
eddy viscosity (diffusivity) would, coverting nonlinearly generated, unresolvable structure
in the computed flow to heat, modeling the effect of a physical viscosity acting at the small
scales of a turbulent cascade.

71

9. SUMMARY

This report has described a series of subroutines which, as a library, constitute the For-
tran implementation of the LCPFCT algorithm. This version of the FCT algorithm is the
culmination of two decades for research into FCT algorithms and represents the natural
extension of the previous ETBFCT and PRBFCT subroutines. We have attempted to
make these subroutines as general as possible without appreciably sacrificing simplicity or
efficiency. The routines, as they stand, treat a wide range of geometries, grid configura-
tions, boundary conditions, and source terms. “Hooks” have been left in these routines to
add additional geometries and source terms and some of these advanced capabilities are
discussed briefly in Section 7. The programs and documentation both indicate places where
an advanced user may wish to make other changes such as employing different weighted av-
erages for computing interface quantities from the cell-averaged conserved variables. This
report describes only the low-phase error, one-dimensional FCT algorithm in the context
of a two-stage Runge-Kutta time integration but this is the version which we have found
easiest to implement on different computers including a number of parallel processing sys-
tems and easiest to teach to people who are just learning CFD and need to get good
multidimensional results in a short period of time.

Here we would like to reiterate the philosophy behind the data and program structure
adopted in LCPFCT. To solve Eq. (1.1) numerically for even one timestep requires a great
deal of input data and many independent calculations. The logically separate components
of this calculation, 1) the data structures used, 2) the geometry of the computational
domain, 3) the system of continuity equations being solved, and 4) the algorithms used
to solved each of these continuity equations, have been built into a hierarchical program
with distinct subroutines requiring separate calls. This separation of function has two
advantages. First, many different types of calculations can be performed using the same
code by mixing and matching various functions (subroutines) in different orders and with
different arguments. Second, functions and calculations which are common to large regions
of the computational domain or to several different continuity equations or which are
unchanged over several timesteps do not need to be performed more than once. Thus
optimization is achieved by eliminating many repeated calculations even though a slight
extra expense is sometimes incurred to construct extra calling sequences made necessary
by the strict separation of function employed in the subroutines.

As a final note of caution, we point out that while the LCPFCT routines have been
checked out carefully, by no means has every possible application been tested. Many com-
binations of calls and valid applications have not yet even been thought of. Thus there
may be bugs which appear in new applications. This warning is particularly important
because FCT algorithms are notoriously forgiving and uncomplaining. They seldom blow

72

up (unless U g—; > %), but rather the solution degrades gracefully and unspectacularly.
This may sound like an advantage but it can be extremely misleading since many poten-
tial users may be accustomed to methods which fall apart quickly when there are even
minor difficulties. Be skeptical; always check your numbers carefully, particularly near the
boundaries. Do not just look at the exponents of the answers or the general (graphical)
properties of your solutions.

Any suggestions for improvements, either for the subroutines or for this exposition
will be gratefully received by the authors and valid changes incorporated in future edi-
tions/printings.

Acknowledgments

We would like to acknowledge the work and contributions of our many colleagues at NRL
and elsewhere who have participated in the development of flux-corrected transport al-
gorithms over the last two decades. David Book, C. Richard DeVore, K. Kailasanath,
Fernando Grinstein, Raafat Guirguis, Chiping Li, B. Edward McDonald, Gopal Patnaik,
Stephen Zalesak, and have contributed to the theoretical development and understanding
of FCT algorithms, have invented new FCT algorithms, have undertaken extensive testing
and analysis of the performance of various FCT algorithms, and have used these methods
in the performance of large-scale CFD research for the Navy, DoD, and the United States.

This work involved in preparing this report has been supported by the Defense Ad-
vanced Research Projects Agency, the Office of Naval Research, and the Naval Research
Laboratory. The development of the original Flux-Corrected Transport algorithms was
supported by DNA, DOE and NRL.

73

REFERENCES

Baer, M.R., and R.J. Gross, 1986, A Two-dimensional Flux-Corrected Transport Solver
for Convectively Dominated Flows, SAND85-0613, Sandia National Laboratories, Al-
buquerque, NM.

Book, D.L., and J.P. Boris, 1981, Finite-Difference Techniques for Vectorized Fluid Dy-
namics Calculations, Chapter 2, Springer-Verlag, New York.

Book, D.L., C. Li, G. Patnaik, and F.F. Grinstein, 1991, Quantifying Residual Numerical
Diffusion in Flux-Corrected Transport Algorithms, J. Sci. Comp. 6 (3): 323-343.

Boris, J.P., 1971, A Fluid Transport Algorithm that Works, in Computing as a Language
of Physics, International Atomic Energy Agency, Vienna, 171-189.

Boris, J.P., 1976, Flux-Corrected Transport Modules for Generalized Continuity Equations,
NRL Memorandom Report 3237, Naval Research Laboratory, Washington, DC.

Boris, J.P., F.F. Grinstein, E.S. Oran, and R.L. Kolbe, 1992, New Insights into Large Eddy
Simulation, to appear, Fluid Dynamics Research.

Boris, J.P., and D.L. Book, 1973, Flux-Corrected Transport I: SHASTA — A Fluid Trans-
port Algorithm that Works, J. Comp. Phys. 11: 38-69.

Boris, J.P., and D.L. Book, 1976, Solution of the Continuity Equation by the Method of
Flux-Corrected Transport, Methods in Computational Physics 16: 85-129.

Colella, P., and P.R. Woodward, 1984, The Piecewise Parabolic Method (PPM) for Gas-
Dynamical Simulations, J. Comp. Phys. 54: 174-201.

DeVore, C.R., 1989, Flux-Corrected Transport Algorithms for Two-Dimensional Compress-
ible Magnetohydrodynamics, U.S. Naval Research Laboratory Memorandum Report
6544.

DeVore, C.R., 1991, Flux-Corrected Transport Techniques for Multidimensional Compress-
ible Magnetohydrodynamics, J. Comp. Phys. 92: 142-160.

Edgar, B.K., and P.R. Woodward, 1991, Diffraction of a Shock Wave by a Wedge: Com-
parison of PPM Simulations with Experiment, AIAA Paper 92-0696: 1-29.

Fyfe, D.E., and G. Patnaik, 1991, Parallel Implementation of Multi-Dimensional FCT
on Non-Orthogonal Meshes, Proceedings, 4th International Symposium on Computa-
tional Fluid Dynamics, Davis CA.

Givoli, D., 1991, Non-Reflecting Boundary Conditions, J. Comp. Phys. 94: 1-29.

74

Godunov, S.K., 1959, Finite Difference Methods for Numerical Computation of Discontin-
uous Solutions of the Equations of Fluid Dynamics, Mat. Sb. 47: 271-306.

Grinstein, F.F.; 1992, Open Boundary Conditions in the Simulation of Subsonic Turbulent
Shear Flows, submitted to J. Comp. Phys.

Grinstein, F.F., and R.H. Guirguis, 1992, Effective Viscosity in the Simulation of Spatially
Evolving Shear Flows with Monotonic FCT Models, J. Comp. Phys. 101: 165-175.

Grosch, C.E., and S.A. Orszag, 1977, Numerical Solution of Problems in Unbounded Re-
gions: Coordinate Transformations, J. Comp. Phys. 25: 273-295.

Gustafson, J.L., G.R. Montry, and R.E. Benner, 1988, Development of Parallel Methods
for a 1024-Processor Hypercube, STAM J. Sci. Stat. Comp. 9: 609-638.

Harten, A., 1974, The Method of Artificial Compression, CIMS Rept. COO-3077-50,
Courant Institute, New York University, New York.

Harten, A., 1983, High Resolution Schemes for Hyperbolic Conservation Laws,
J. Comp. Phys. 49: 357-93.

Kutler, P. (ed), 1982, Numerical Boundary Condition Procedures, NASA Conference Pub-
lication 2201, NASA Ames Research Center, Moffett Field, CA.

Lafon, F., and S. Osher, 1992, Essentially Nonoscillatory Postprocessing Filtering Methods,
NASA Contractor Report 189610, ICASE-92-05.

Landsberg, A.M., and J.P. Boris, 1992, An Efficient Method for Solving Flows Around
Complex Bodies, U.S. Naval Research Laboratory Memorandum Report, to appear.

Lax, P.D., and B. Wendroff, 1964, Difference Schemes for Hyperbolic Equations with High
Order of Accuracy, Comm. Pure Appl. Math. 17: 381-398.

Lohner, R., K. Morgan, J. Peraire, and M. Vahdati, 1987, Finite Element Flux-Corrected
Transport (FEM-FCT) for the Euler and Navier-Stokes Equations, Int. J. Num. Meth.
Fluids 7: 1093-1109.

Leonard, B.P., and H.S. Niknafs, 1990, A Cost Effective Strategy for Nonoscillatory Con-
vection Without Clipping, NASA Technocal Memorandum 102538, ICOMP-90-09.

Nessyahu, H., and E. Tadmor, 1990, Non-Oscillatory Central Differencing for Hyperbolic
Conservation Laws, J. Comp. Phys. 87: 408-463.

Odstrcil, D., 1990, A New Optimized FCT Algorithm for Shock Wave Problems, J. Comp.
Phys. 91: 71-93.

75

Oran, E.S., and J.P. Boris, 1987, Numerical Simulation of Reactive Flow, Chapter 8,
Elsevier, New York.

Oran, E.S. and J.P. Boris, 1991, Compressible Flow Simulations on a Massively Parallel
Computer, International Journal of Modern Physics C, 430—436.

Patnaik, G., R.H. Guirguis, J.P. Boris, and E.S. Oran, 1987, A Barely Implicit Correction
for Flux-Corrected Transport, J. Comp. Phys. 71: 1-20.

Poinsot, T.J. and Lele, S.K., 1992, Boundary Conditions for Direct Simulations of Com-
pressible Viscous Flows, J. Comp. Phys. 101: 104-129.

Rood, R.B., 1987, Numerical Advection Algorithms and their Role in Atmospheric Trans-
port and Chemistry Models, Rev. Geophys. 25: 71-100.

Thompson, K.W., 1987, Time Dependent Boundary Conditions for Hyperbolic Systems,
J. Comp. Phys. 68: 1-24.

Thompson, K.W.; 1990, Time Dependent Boundary Conditions for Hyperbolic Systems,
I, J. Comp. Phys. 89: 439-461.

Turkel, E., 1980, Numerical Methods for Large-Scale Time-Dependent Partial Differential
Equations, in W. Kollmann, ed., Computational Fluid Dynamics, Volume 2, Hemi-
sphere, Washington DC, 127-262..

van Leer, B., 1973, Towards the Ultimate Conservative Difference Scheme. I. The Quest
of Monotonicity, in H. Cabannes and R. Temam, eds., Lecture Notes in Physics 18,
Springer-Verlag, Berlin, 163-168.

van Leer, B., 1979, Towards the Ultimate Conservative Difference Scheme. V. A Second
Order Sequel to Godunov’s Method, J. Comp. Phys. 32: 101-136, 1979.

Woodward, P., and P. Colella, 1984, The Numerical Simulation of Two-Dimensional Fluid
Flow with Strong Shocks, J. Comp. Phys. 54: 115-173.

Zalesak, S.T., 1979, Fully Multidimensional Flux-Corrected Transport Algorithms for Flu-
ids, J. Comp. Phys. 31: 335-362.

Zalesak, S.T., 1981, Very High Order and pseudospectral Flux-Corrected Transport (FCT)
Algorithms for Conservations Laws, in R. Vichnevetsky and R.S. Stepleman, Advances
in Computer Methods for Partial Differential Equations, Vol. IV, 126-134.

76

Appendix A

APPENDIX A. LISTING OF LCPFCT LIBRARY SUBROUTINES

The thirteen subroutines of the LCPFCT library are listed sequentially in the following
pages. The four main subroutines, LCPFCT, MAKEGRID, VELOCITY, and SOURCES
are listed first followed by the remaining routines in alphabetic order. The following index is
provided to direct the reader to the page where the listing of each of the routines, including
the block data routine FCTBLK, begins.

LCPFCT o . oo s s A2
MAKEGRIDo AS
VELOCITY o . o o o e AT
SOURCES A8
CNVFCTo A
CONSERVE A13
COPYGRID Al4
FCTBLK Als
NEW.GRID A
RESIDIFF«o AIT
SET_GRID A8
ZERODIFF A9
ZEROFLUXo oo A2

el eNes e NN e NN e s NN e N NN N NN e N NN s e N e N e e e N NN N e N e N Ne e e Ne N e N e N NN N P!

Appendix A

Subroutine LCPFCT (RHOO, RHON, I1, IN,
SRHO1, VRHO1, SRHON, VRHON, PBC)

Originated: J.P. Boris Code 4400, NRL Feb 1987
Modified: Laboratory for Computational Physics & Fluid Dynamics
Contact: J.P. Boris, J.H. Gardner, A.M. Landsberg, or E.S. Oran

Description: This routine solves generalized continuity equations
of the form dRHO/dt = -div (RHO*V? + SOURCES in the user’s choice
of Cartesian, cylindrical, or spherical coordinate systems. A
facility is included to allow definition of other coordinates.

The grid can be Fulerian, sliding rezone, or Lagrangian and can

be arbitrarily spaced. The algorithm is a low-phase-error FCT
algorithm, vectorized and optimized for a combination of speed and
flexibility. A complete description appears in the NRL Memorandum
Report (1992), "LCPFCT - A Flux-Corrected Transport Algorithm For
Solving Generalized Continuity Equations".

Arguments:

RHOO Real Array grid point densities at start of step I
RHON Real Array grid point densities at end of step 0
I1 Integer first grid point of integration I
IN Integer last grid point of intergration I
SRHO1 Real Array boundary guard cell factor at cell I1+1 I
VRHO1 Real Array boundary value added to guard cell I1-1 1
SRHON Real Array boundary guard cell factor at cell IN+1 I
VRHON Real Array boundary value added to guard cell IN+1 I
PBC Logical periodic boundaries if PBC = .true. I

In this routine the last interface at RADHN(INP) is the outer
boundary of the last cell indexed IN. The first interface at
RADHN(I1) is the outer boundary of the integration domain before
the first cell indexed I1.

Language and Limitations: LCPFCT is a package of FORTRAN 77 sub-
routines written in single precision (64 bits CRAY). The parameter
NPT is used to establish the internal FCT array dimensions at the
maximum size expected. Thus NPT = 202 means that continuity equa-
tions for systems up to 200 cells long in one direction can be
integrated. Underflows can occur when the function being trans-
ported has a region of zeroes. The calculations misconserve by
one or two bits per cycle. Relative phase and amplitude errors
(for smooth functions) are typically a few percent for character-
istic lengths of 1 - 2 cells (wavelengths of order 10 cells). The
jump conditions for shocks are generally accurate to better than 1
percent. Common blocks are used to transmit all data between the
subroutines in the LCPFCT package.

Auxiliary Subroutines: CNVFCT, CONSERVE, COPYGRID, MAKEGRID,
NEW_GRID, RESIDIFF, SET_GRID, SOURCES, VELOCITY, ZERODIFF, and
ZEROFLUX. The detailed documentation report provided (or the
listing below) explains the definitions and use of the arguments
to these other subroutines making up the LCPFCT package. These
routines are not called from LCPFCT itself but are controlled by
calls from the user. Subroutines MAKEGRID, VELOCITY and SOURCES
in this package must first be called to set the grid geometry,

A-2

QOO0 00

Appendix A

velocity-dependent flux and diffusion coefficients, and external
source arrays used by LCPFCT. The other subroutines may be called
to perform other functions such as to modify boundary conditiomns,
to perform special grid operations, or compute conservation sums.

Implicit NONE
Integer NPT, I1, IN, I1P, INP, I
Real BIGNUM, SRHO1, VRHO1, SRHON, VRHON, RHO1M, RHONP
Real RHOT1M, RHOTNP, RHOTD1M, RHOTDNP
Logical PBC
Parameter (NPT = 202)
Parameter (BIGNUM = 1.0E38)
BIGNUM = Machine Dependent Largest Number - Set By The User!!!!

Real RHOO (NPT) , RHON (NPT)
/FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT), SCR1(NPT), DIFF (NPT)
Real FLXH(NPT), FABS(NPT) , FSGN (NPT)
Real TERM(NPT) , TERP (NPT) , LNRHOT (NPT)
Real LORHOT (NPT) , RHOT (NPT) , RHOTD (NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,
& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD
/FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT) , AH (NPT)
Real RLN(NPT) , LH (NPT), RLH(NPT)
Real ROH(NPT) , RNH(NPT) , ADUGTH(NPT)

Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

/FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH (NPT)
Real EPSH(NPT) , VDTODR (NPT)

Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR

/FCT_MISC/ Holds the source array and diffusion coefficient

Real SOURCE (NPT) , DIFF1
Common /FCT_MISC/ SOURCE, DIFF1

If (PBC) Then
RHO1M = RHOO(IN)
RHONP = RHOO(I1)
Else
RHO1M = SRHO1xRHOO(I1) + VRHO1
RHONP = SRHON*RHOO(IN) + VRHON
End If
DIFF(I1) = NULH(I1) = (RHOO(I1) - RHO1M)
FLXH(I1) = HADUDTH(I1) = (RHOO(I1) + RHO1IM)

Do 1 I = I1P, IN
FLXH(I) = HADUDTH(I) * (RHOO(I) + RHOO(I-1))
1 DIFF(I) = NULH(I) * (RHOO(I) - RHOO(I-1))

A-3

Appendix A

NULH(INP) * (RHONP - RHOO(IN))
HADUDTH(INP) * (RHONP + RHOO(IN))

DIFF (INP)
FLXH(INP)

C Calculate LORHOT, the transported mass elements, and LNRHOT, the
c transported & diffused mass elements

LO(I)*RHOO(I) + SOURCE(I) + (FLXH(I)-FLXH(I+1))
LORHOT(I) + (DIFF(I+1) - DIFF(I))
LORHOT(I)*RLN(I)

LNRHOT (I)*RLN(I)

LORHOT(I)
LNRHOT (I)
RHOT(I)

2 RHOTD(I)

Do 2 I =11, IN

c Evaluate the boundary conditions for RHOT and RHOTD .

If (PBC) Then
RHOT1M = RHOT(IN)
RHOTNP = RHOT(I1)
RHOTD1M = RHOTD(IN)
RHOTDNP = RHOTD(I1)

Else
RHOT1M
RHOTNP
RHOTD1M
RHOTDNP

End If

SRHO1*RHOT(I1) + VRHO1

SRHON*RHOT (IN) + VRHON
SRHO1*RHOTD(I1) + VRHO1
SRHON*RHOTD (IN) + VRHON

Calculate the transported antiduffusive fluxes and transported
c and diffused density differences

MULH(I1) * (RHOT(I1) - RHOT1M)
RHOTD(I1) - RHOTDIM

ABS (FLXH(I1))

SIGN (DIFF1, DIFF(I1))

(@]

FLXH(I1)
DIFF(I1)
FABS(I1)
FSGN(I1)

Do 3 I = I1P, IN
FLXH(I) MULH(I) * (RHOT(I) - RHOT(I-1))
3 DIFF(I) RHOTD(I) - RHOTD(I-1)

MULH(INP) * (RHOTNP - RHOT(IN))
RHOTDNP - RHOTD(IN)

FLXH(INP)
DIFF (INP)

c Calculate the magnitude & sign of the antidiffusive flux followed
c by the flux-limiting changes on the right and left

Do 4 I =11,
FABS(I+1) = ABS (FLXH(I+1))

FSGN(I+1) = SIGN (DIFF1, DIFF(I+1))

TERM(I+1) FSGN(I+1)*LN(I)*DIFF(I)

4 TERP(I) = FSGN(I)*LN(I)*DIFF(I+1)

nmnnH
=

If (PBC) Then
TERP(INP) = TERP(I1)
TERM(I1) = TERM(INP)

Else
TERP (INP) = BIGNUM
TERM(I1) = BIGNUM

End If

c Correct the transported fluxes completely and then calculate the
c new Flux-Corrected Transport densities

A-4

QO OO0 00O000Q

Appendix A

FLXH(I1) = FSGN(I1) * AMAX1 (0.0,
& AMIN1 (TERM(I1), FABS(I1), TERP(I1)))

Do 5 I =1I1, IN
FLXH(I+1) = FSGN(I+1) * AMAX1 (0.0,
& AMIN1 (TERM(I+1), FABS(I+1), TERP(I+1)))
RHON(I) = RLN(I) * (LNRHOT(I) + (FLXH(I) - FLXH(I+1)))
5 SOURCE(I) = 0.0

Return
End

Subroutine MAKEGRID (RADHO, RADHN, I1, INP, ALPHA)

Description: This Subroutine initializes geometry variables and
coefficients. It should be called first to initialize the grid.
The grid must be defined for all of the grid interfaces from Il to
INP. Subsequent calls to VELOCITY and LCPFCT can work on only
portions of the grid, however, to perform restricted integrations
on separate line segments.
Arguments:
RADHO Real Array(INP) 0old cell interface positions I
RADHN Real Array(INP) new cell interface positions I
I1 Integer first cell interface I
INP Integer last cell interface I
ALPHA Integer = 1 for cartesian geometry I
= 2 for cylindrical geometry I
= 3 for spherical geometry I
= 4 general geometry (user supplied) I

Implicit NONE
Integer NPT, I1, I1P, I, IN, INP, ALPHA
Parameter (NPT = 202)

Real RADHO(INP), RADHN(INP), PI, FTPI
/FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT), SCR1 (NPT), DIFF (NPT)
Real FLXH(NPT), FABS (NPT) , FSGN (NPT)
Real TERM(NPT), TERP (NPT), LNRHOT (NPT)
Real LORHOT(NPT), RHOT(NPT), RHOTD (NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,
& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD
/FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT) , RNH(NPT) , ADUGTH (NPT)

Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH
DATA PI, FTPI /3.1415927, 4.1887902/

Appendix A

I1P =11 + 1
IN = INP - 1
¢ Store the old and new grid interface locations from input and then
¢ update the new and average interface and grid coefficients .
C ___
Do 1 I = TI1, INP
ROH(I) = RADHO(I)
1 RNH(I) = RADHN(I)

¢ Select the choice of coordinate systems .
Go To (100, 200, 300, 400), ALPHA

¢ Cartesian coordinates .

C ___
100 AH(INP) = 1.0
Do 101 I = I1, IN
AH(I) = 1.0
LO(I) = ROH(I+1) - ROH(I)
101 LN(I) = RNH(I+1) - RNH(I)
Go To 500
¢ Cylindrical Coordinates: RADIAL .
C ___
200 DIFF(I1) = RNH(I1)=*RNH(I1)
SCRH(I1) = ROH(I1)*ROH(I1)
AH(INP) = PI*(ROH(INP) + RNH(INP))
DO 201 I = I1, IN
AH(I) = PI*(ROH(I) + RNH(I))
SCRH(I+1) = ROH(I+1)*ROH(I+1)
LO(I) = PI*(SCRH(I+1) - SCRH(I))
DIFF(I+1) = RNH(I+1)*RNH(I+1)
201 LN(I) = PI*(DIFF(I+1) - DIFF(I))
Go To 500
¢ Spherical Coordinates: RADIAL .
C ___
300 SCR1(I1) = ROH(I1)*ROH(I1)*ROH(I1)
DIFF(I1) = RNH(I1)*RNH(I1)*RNH(I1)
SCRH(INP) = (ROH(INP) + RNH(INP))*ROHC(INP)
AH(INP) = FTPI*(SCRH(INP) + RNH(INP)*RNH(INP))
DO 301 I = I1, IN
SCR1(I+1) = ROH(I+1)=*ROH(I+1)*ROH(I+1)
DIFF(I+1) = RNH(I+1)*RNH(I+1)=*RNH(I+1)
SCRH(I) = (ROH(I) + RNH(I))*ROH(I)
AH(I) = FTPI*(SCRH(I) + RNH(I)*RNH(I))
LO(I) = FTPI*(SCR1(I+1) - SCR1(I))
301 LN(I) = FTPI*(DIFF(I+1) - DIFF(I))
Go To 500

¢ Special Coordinates: Areas and Volumes are User Supplied .

400 Continue
¢ Additional system independent geometric variables
C ___
500 Do 501 I = I1, IN
501 RLN(I) = 1.0/LN(I)
LH(I1) = LN(I1)
RLH(I1) = RLN(I1)

A-6

QO OO0 0O000Q

Appendix A

Do 502 I = I1P, IN
LH(I) = 0.5%(LN(I) + LN(I-1))
502 RLH(I) = 0.5%(RLN(I) + RLN(I-1))
LH(INP) = LN(IN)
RLH(INP) = RLN(IN)
Do 503 I = I1, INP
503 ADUGTH(I) = AH(I)*(RNH(I) - ROH(I))
Return

End

Subroutine VELOCITY (UH, I1, INP, DT)

Description: This subroutine calculates all velocity-dependent
coefficients for the LCPFCT and CNVFCT routines. This routine

must be called before either LCPFCT or CNVFCT is called. MAKEGRID
must be called earlier to set grid and geometry data used here.
Arguments:

UH Real Array(NPT) flow velocity at cell interfaces I
I1 Integer first cell interface of integration I
INP Integer last cell interface = N + 1 I
DT Real stepsize for the time integration I

Implicit NONE
Integer NPT, I1, I1P, I, IN, INP
Parameter (NPT = 202)

Real UH(INP), DT, RDT, DTH, DT2, DT4, ONE3RD, ONE6TH
/FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT

Real SCRH(NPT) , SCR1(NPT), DIFF (NPT)

Real FLXH(NPT), FABS(NPT), FSGN (NPT)

Real TERM(NPT), TERP (NPT) , LNRHOT (NPT)

Real LORHOT(NPT), RHOT(NPT), RHOTD (NPT)

Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,

& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD

/FCT_GRID/ Holds geometry, grid, area and volume information

Real LO(NPT), LN(NPT) , AH (NPT)

Real RLN(NPT) , LH (NPT), RLH(NPT)

Real ROH(NPT) , RNH(NPT) , ADUGTH (NPT)

Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

/FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH (NPT)
Real EPSH(NPT), VDTODR (NPT)

Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR

ItPp = 11 + 1
IN = INP - 1

Calculate 0.5%Interface Area * Velocity Difference * DT (HADUDTH).
Next calculate the interface epsilon (EPSH = V*DT/DX). Then find

A-7

QOO0 0O00

OO0 0Q

Appendix A

the diffusion (NULH) and antidiffusion (MULH) coefficients. The
variation with epsilon gives fourth-order accurate phases when the
grid is uniform, the velocity constant, and SCRH is set to zero.

With SCRH nonzero (as below) slightly better results are obtained

in some of the tests.
on the application.

Optimal performance, of course, depends on

RDT = 1.0/DT
DTH = 0.5%DT

ONE6TH = 1.0/6.0
ONE3RD = 1.0/3.0
Do 1 I =1I1, INP

HADUDTH(I) = DT*AH(I)*UH(I) - ADUGTH(I)
EPSH(I) = HADUDTH(I)*RLH(I)

SCRH(TI)
SCRH(I)

AMIN1

(ONE6TH, ABS(EPSH(I)))

ONE3RD*SCRH(I) **2

HADUDTH(I) = 0.5%HADUDTH(I)

NULH(I)

MULH(I)
NULH(I)
MULH(I)
1 DIFF(I)

UH(I)

ONE6TH + ONE3RD*(EPSH(I) + SCRH(I))*

(EPSH(I) - SCRH(I))

0.25 - 0.5%NULH(I)
LH(I)*(NULH(I) + SCRH(I))
LH(I)*(MULH(I) + SCRH(I))

- RDT*(RNH(I) - ROH(I))

Now calculate VDTODR for CNVFCT .

DT2 = 2.0%*DT
DT4 = 4.0x*DT

VDTODR(I1) = DT2+DIFF(I1)/(RNH(I1P)-RNH(I1) +

& ROH(I1P)-ROH(I1))
Do 2 I = I1P, IN
2 VDTODR(I) = DT4*DIFF(I)/(RNH(I+1)-RNH(I-1) +
& ROH(I+1)-ROH(I-1))
VDTODR (INP) = DT2*DIFF(INP)/(RNH(INP)-RNH(IN) +
& ROH (INP)-ROH(IN))
Return
End

Subroutine SOURCES (I1, IN, DT, MODE, C, D, D1, DN)

Description: This Subroutine accumulates different source terms.
Arguments:
I1 Integer first cell to be integrated
IN Integer last cell to be integrated
DT Real stepsize for the time integration
MODE Integer = 1 computes + DIV (D)
= 2 computes + C*xGRAD (D)
= 3 adds + D to the sources
=4 + DIV (D) from interface data
=5 + C*GRAD (D) from interface data
=6 + C for list of scalar indices
C Real Array(NPT) Array of source variables
D Real Array(NPT) Array of source variables

A-8

HHHHHHHHHHH

O

Appendix A

D1 Real first boundary value of D I
DN Real last boundary value of D I

Implicit NONE
Integer NPT, NINDMAX, MODE, IS, I, I1, IN, I1P, INP
Parameter (NPT = 202, NINDMAX = 150)

Real C(NPT), D(NPT), DT, DTH, DTQ, D1, DN
/FCT_NDEX/ Holds a scalar list of special cell information .

Real SCALARS (NINDMAX)

Integer INDEX(NINDMAX), NIND

Common /FCT_NDEX/ NIND, INDEX, SCALARS

/FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT

Real SCRH(NPT), SCR1(NPT), DIFF (NPT)

Real FLXH(NPT), FABS(NPT) , FSGN (NPT)

Real TERM(NPT) , TERP (NPT) , LNRHOT (NPT)

Real LORHOT(NPT), RHOT(NPT), RHOTD (NPT)

Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,
& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD

/FCT_GRID/ Holds geometry, grid, area and volume information

Real LO(NPT), LN(NPT) , AH (NPT)

Real RLN(NPT) , LH (NPT), RLH(NPT)

Real ROH(NPT) , RNH(NPT) , ADUGTH(NPT)

Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

/FCT_MISC/ Holds the source array and diffusion coefficient
Real SOURCE (NPT) , DIFF1
Common /FCT_MISC/ SOURCE, DIFF1

I1p =11 + 1
INP = IN + 1
DTH = 0.5%*DT
DTQ = 0.25*DT

Go To (101, 202, 303, 404, 505, 606), MODE

+ DIV(D) is computed conservatively and added to SOURCE .
101 SCRH(I1) = DT*AH(I1)=D1
SCRH(INP) = DT*AH(INP)=*DN
Do 1 I = IN, I1P, -1
SCRH(I) = DTH*AH(I)*(D(I) + D(I-1))
1 SOURCE(I) = SOURCE(I) + (SCRH(I+1) - SCRH(I))
SOURCE(I1) = SOURCE(I1) + (SCRH(I1P) - SCRH(I1))
Return

+ C*xGRAD(D) is computed efficiently and added to the SOURCE .
202 SCRH(I1) = DTHxD1

SCRH(INP) = DTH*DN

Do 2 I = IN, I1P, -1

SCRH(I) = DTQ*(D(I)+D(I-1))
DIFF(I) = SCRH(I+1) - SCRH(I)
2 SOURCE(I) = SOURCE(I)
& + C(I)*(AH(I+1)+AH(I))*DIFF(I)

SOURCE(I1) = SOURCE(I1) + C(I1)*(AH(I1P)+AH(I1))*

A-9

OO0 00000O0000Q

+

+

404

+

505

+

Appendix A

& (SCRH(I1P)-SCRH(I1))
Return

D is added to SOURCE in an explicit formulation .
Do 3 I =11, IN
SOURCE(I) = SOURCE(I) + DT*LO(I)=*D(I)
Return

DIV(D) is computed conservatively from interface data .
SCRH(INP) = DT*AH(INP)*DN
SCRH(I1) = DT*AH(I1)=*D1
Do 4 T = IN, I1P, -1
SCRH(I) = DT*AH(I)*D(I)
SOURCE (1) SOURCE (I)+SCRH(I+1)-SCRH(I)
SOURCE(I1) = SOURCE(I1) + SCRH(I1P) - SCRH(I1)
Return

CxGRAD(D) is computed using interface data .
SCRH(I1) = DTH*D1
SCRH(INP) = DTH*DN
Do 5 1 = IN, I1P, -1
SCRH(I) = DTH*D(I)
DIFF(I) = SCRH(I+1) - SCRH(I)

SOURCE(I) = SOURCE(I)
& + C(I)*(AH(I+1)+AH(I))*DIFF(I)
SOURCE(I1) = SOURCE(I1) + C(I1)*(AH(I1P)+AH(I1))x*
& (SCRH(I1P)-SCRH(I1))
Return

C for source terms only at a list of indices
Do 6 IS = 1, NIND
I = INDEX(IS)
SOURCE(I) = SOURCE(I) + SCALARS(IS)

Return
End

Subroutine CNVFCT (RHOO, RHON, Ii, IN,

& SRHO1, VRHO1, SRHON, VRHON, PBC)
Originated: J.P. Boris Code 4400, NRL Feb 1987
Modified: Laboratory for Computational Physics & Fluid Dynamics
Contact: J.P. Boris, J.H. Gardner, A.M. Landsberg, or E.S. Oran

Description: This routine solves an advective continuity equation
of the form dRHO/dt = -V*grad(RHO) + SOURCES in the user’s choice
of Cartesian, cylindrical, or spherical coordinate systems. A
facility is included to allow definition of other coordinates.

The grid can be Eulerian, sliding rezone, or Lagrangian and can

be arbitrarily spaced. The algorithm is a low-phase-error FCT
algorithm, vectorized and optimized for a combination of speed and
flexibility. A complete description appears in the NRL Memorandum
Report (1992), "LCPFCT - A Flux-Corrected Transport Algorithm For

A-10

QOO0 0O0O0

Appendix A

Solving Generalized Continuity Equations".

Arguments:

RHOO Real Array grid point densities at start of step I
RHON Real Array grid point densities at end of step 0
I1 Integer first grid point of integration I
IN Integer last grid point of intergration I
SRHO1 Real Array boundary guard cell factor at cell I1+1 I
VRHO1 Real Array boundary value added to guard cell I1-1 I
SRHON Real Array boundary guard cell factor at cell IN+1 I
VRHON Real Array boundary value added to guard cell IN+1 I
PBC Logical periodic boundaries if PBC = .true. I

In this routine the last interface at RADHN(INP) is the outer
boundary of the last cell indexed IN. The first interface at
RADHN(I1) is the outer boundary of the integration domain before
the first cell indexed I1. The description of CNVFCT and the
roles played by the auxiliary library routines is the same for
LCPFCT given above.

Implicit NONE
Integer NPT, I1, IN, I1P, INP, I
Real BIGNUM, SRHO1, VRHO1, SRHON, VRHON, RHO1M, RHONP
Real RHOT1M, RHOTNP, RHOTD1M, RHOTDNP
Logical PBC
Parameter (NPT = 202)
Parameter (BIGNUM = 1.0E38)
BIGNUM = Machine Dependent Largest Number - Set By The User!!!!

Real RHOO (NPT) , RHON (NPT)
/FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT) , SCR1(NPT), DIFF (NPT)
Real FLXH(NPT), FABS(NPT), FSGN (NPT)
Real TERM(NPT) , TERP (NPT) , LNRHOT (NPT)
Real LORHOT (NPT) , RHOT (NPT) , RHOTD (NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,
& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD
/FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT) , LH (NPT), RLH(NPT)
Real ROH(NPT) , RNH(NPT) , ADUGTH(NPT)

Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

/FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH (NPT)
Real EPSH(NPT), VDTODR (NPT)

Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR

/FCT_MISC/ Holds the source array and diffusion coefficient
Real SOURCE(NPT) , DIFF1
Common /FCT_MISC/ SOURCE, DIFF1

Calculate the convective and diffusive fluxes

A-11

Appendix A

If (PBC) Then
RHO1M = RHOO(IN)
RHONP = RHOO(I1)
Else
RHO1M = SRHO1*RHOO(I1) + VRHO1
RHONP = SRHON*RHOO(IN) + VRHON
End If
DIFF(I1) = NULH(I1) = (RHOO(I1) - RHOIM)
FLXH(I1) = VDTODR(I1) * (RHOO(I1) - RHO1IM)

Do 1 I = I1P, IN

DIFF(I) = (RHOO(I) - RHOO(I-1))
FLXH(I) = VDTODR(I) * DIFF(I)
1 DIFF(I) = NULH(I) * DIFF(I)
DIFF(INP) = NULH(INP) * (RHONP - RHOO(CIN))
FLXH(INP) = VDTODR(INP) * (RHONP - RHOO(IN))

Calculate LORHOT, the transported mass elements, and LNRHOT, the
transported & diffused mass elements

Do 2 I =11, IN
LORHOT(I) = LN(I) * (RHOO(I) - 0.5%(FLXH(I+1) + FLXH(I)))
& + SOURCE(I)
LNRHOT(I) = LORHOT(I) + (DIFF(I+1) - DIFF(I))
RHOT(I) = LORHOT(I)+*RLN(I)
2 RHOTD(I) = LNRHOT(I)+*RLN(I)
Evaluate the boundary conditions for RHOT and RHOTD .
C ___
If (PBC) Then
RHOT1M = RHOT(IN)
RHOTNP = RHOT(I1)
RHOTD1M = RHOTD(IN)
RHOTDNP = RHOTD(I1)
Else
RHOTIM = SRHO1*RHOT(I1) + VRHO1
RHOTNP = SRHON*RHOT(IN) + VRHON
RHOTD1M = SRHO1xRHOTD(I1) + VRHO1
RHOTDNP = SRHON*RHOTD(IN) + VRHON
End If
c Calculate the transported antiduffusive fluxes and transported
c and diffused density differences
C ___
FLXH(I1) = MULH(I1) = (RHOT(I1) - RHOTIM)
DIFF(I1) = RHOTD(I1) - RHOTDIM
FABS(I1) = ABS (FLXH(I1))
FSGN(I1) = SIGN (DIFF1, DIFF(I1))
Do 3 I = I1P, IN
FLXH(I) = MULH(I) = (RHOT(I) - RHOT(I-1))
3 DIFF(I) = RHOTD(I) - RHOTD(I-1)
FLXH(INP) = MULH(INP) * (RHOTNP - RHOT(IN))
DIFF(INP) = RHOTDNP - RHOTD(IN)
c Calculate the magnitude & sign of the antidiffusive flux followed
c by the flux-limiting changes on the right and left

A-12

Q

QOO0 0O0O0O0O0O0O0O0

Qo

Appendix A

Do 4 I = I1,
FABS(I+1) = ABS (FLXH(I+1))

FSGN(I+1) = SIGN (DIFF1, DIFF(I+1))

TERM(I+1) = FSGN(I+1)=*LN(I)*DIFF(I)

4 TERP(I) = FSGN(I)*LN(I)*DIFF(I+1)

nnnH
=

If (PBC) Then
TERP(INP) = TERP(I1)
TERM(I1) = TERM(INP)

Else
TERP(INP) = BIGNUM
TERM(I1) = BIGNUM

End If

Correct the transported fluxes completely and then calculate the
new Flux-Corrected Transport densities
FLXH(I1) = FSGN(I1) * AMAX1 (0.0,
& AMIN1 (TERM(I1), FABS(I1), TERP(I1)))

Do 5 I =11, IN
FLXH(I+1) = FSGN(I+1) * AMAX1 (0.0,
& AMIN1 (TERM(I+1), FABS(I+1), TERP(I+1)))
RHON(I) = RLN(I) * (LNRHOT(I) + (FLXH(I) - FLXH(I+1)))
5 SOURCE(I) = 0.0

Return
End

Subroutine CONSERVE (RHO, I1, IN, CSUM)

Description: This routine computes the ostensibly conserved sum.
Beware your boundary conditions and note that only one continuity
equation is summed for each call to this subroutine.

Arguments:

RHO Real Array(NPT) cell values for physical variable ’RHO’ I
I1 Integer first cell to be integrated I
IN Integer last cell to be integrated I
CSUM Real value of the conservation sum of rho 0

Implicit NONE
Integer NPT, I, I1, IN
Parameter (NPT = 202)

Real CSUM, RHO(NPT)
/FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT), LH (NPT), RLH(NPT)
Real ROH(NPT) , RNH(NPT) , ADUGTH (NPT)

Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

Compute the ostensibly conserved total mass (BEWARE B.C.)

QOO0 0O000Q

Appendix A

CSUM = 0.0
Do 80 I = I1, IN
80 CSUM = CSUM + LN(I)*RHO(I)
Return
End

Subroutine COPYGRID (MODE, I1, IN)

Description: This Subroutine makes a complete copy of the grid
variables defined by the most recent call to MAKEGRID from cell

I1 to IN including the boundary values at interface IN+1 when the
argument MODE = 1. When MODE = 2, these grid variables are reset
from common block OLD_GRID. This routine is used where the same
grid is needed repeatedly after some of the values have been over-
written, for example, by a grid which moves between the halfstep
and the whole step.

Argument:

I1 Integer first cell index I
IN Integer last cell index I
MODE Integer 1 grid variables copied into OLD_GRID I

2 grid restored from OLD_GRID common I

Implicit NONE
Integer NPT, I, MODE, I1, IN
Parameter (NPT = 202)

/OLD_GRID/ Holds geometry, grid, area and volume information

Real LOP(NPT), LNP(NPT), AHP (NPT)
Real RLNP (NPT) , RLHP (NPT) , LHP (NPT)
Real ROHP (NPT) , RNHP (NPT) , ADUGTHP (NPT)
Common /OLD_GRID/ LOP, LNP, AHP, RLNP, LHP, RLHP,
& ROHP, RNHP, ADUGTHP
/FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT), AH (NPT)
Real RLN(NPT) , LH (NPT), RLH(NPT)
Real ROH(NPT) , RNH(NPT) , ADUGTH(NPT)

Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

If (MODE .eq. 1) Then
Do 101 I = I1, IN

LOP(I) = LO(D)
LNP(I) = LN(I)
101 RLNP(I) = RLN(I)
Do 102 I = I1, IN+1
AHP(I) = AH(I)
LHP(I) = LH(I)
RLHP(I) = RLH(I)
ROHP(I) = ROH(I)
RNHP(I) = RNH(I)
102 ADUGTHP(I) = ADUGTH(I)

Else If (MODE .eq. 2) Then

A-14

OO0 0Q

Appendix A

Do 201 I = I1, IN

LO(I) = LOP(I)
LN(I) = LNP(I)
201 RLN(I) = RLNP(I)
Do 202 I = I1, IN+1
AH(I) = AHP(I)
LH(I) = LHP(I)
RLH(I) = RLHP(I)
ROH(I) = ROHP(I)
RNH(I) = RNHP(I)
202 ADUGTH(I) = ADUGTHP(I)
Else
Write (6, 1001) MODE
End If
1001 Format (’ COPYGRID Error! MODE =’, I3, ’ (not 1 or 2!)’)
Return

End

Block Data FCTBLK

Implicit NONE
Integer NPT
Parameter (NPT = 202)

/FCT_MISC/ Holds the source array and diffusion coefficient
Real SOURCE (NPT) , DIFF1
Common /FCT_MISC/ SOURCE, DIFF1
Data SOURCE / NPT*0.0 /, DIFF1 / 0.999 /

End

Subroutine NEW_GRID (RADHN, I1, INP, ALPHA)

Description: This Subroutine initializes geometry variables and
coefficients when the most recent call to MAKEGRID used the same
set of values RADHO and only the new interface locations RADHN are
different. NEW_GRID is computationally more efficienty than the
complete grid procedure in MAKEGRID because several formulae do
not need to be recomputed. The grid should generally be defined
for the entire number of grid interfaces from 1 to INP, however
subsets of the entire grid may be reinitialized with care.

Arguments:

RADHN Real Array(INP) new cell interface positions

I1 Integer first interface index

INP Integer last interface index

ALPHA Integer 1 for cartesian geometry

2 for cylindrical geometry

3 for spherical geometry

4 general geometry (user supplied)

HHHHHHH

A-15

Appendix A

Implicit NONE
Integer NPT, I1, I1P, I, IN, INP, ALPHA
Parameter (NPT = 202)

Real RADHN (INP), PI, FTPI
/FCT_SCRH/ Holds scratch arrays for use by LCPFCT and CNVFCT
Real SCRH(NPT), SCR1 (NPT), DIFF (NPT)
Real FLXH(NPT) , FABS (NPT) , FSGN (NPT)
Real TERM (NPT) , TERP (NPT) , LNRHOT (NPT)
Real LORHOT(NPT), RHOT(NPT), RHOTD (NPT)
Common /FCT_SCRH/ SCRH, SCR1, DIFF, FLXH, FABS, FSGN,
& TERM, TERP, LNRHOT, LORHOT, RHOT, RHOTD
/FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN (NPT), AH (NPT)
Real RLN(NPT) , LH (NPT), RLH(NPT)
Real ROH(NPT) , RNH(NPT) , ADUGTH (NPT)
Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH
DATA PI, FTPI /3.1415927, 4.1887902/
I1P = I1 + 1
IN = INP - 1

Store the old and new grid interface locations from input and then
update the new and average interface and grid coefficients .

Do 1 I = I1, INP
1 RNH(I) = RADHN(I)

Select the choice of coordinate systems .

Go To (100, 200, 300, 400), ALPHA

Cartesian coordinates

100 AH(INP) = 1.0
Do 101 I = I1, IN
101 LN(I) = RNH(I+1) - RNH(I)

Go To 500

Cylindrical Coordinates: RADIAL .

200 DIFF(I1) = RNH(I1)*RNH(I1)
AH(INP) = PI*x(ROH(INP) + RNH(INP))
DO 201 I = I1, IN
AH(I) = PI*x(ROH(I) + RNH(I))
DIFF(I+1) = RNH(I+1)*RNH(I+1)
201 LN(I) = PI*(DIFF(I+1) - DIFF(I))
Go To 500

Spherical Coordinates: RADIAL .

300 DIFF(I1) = RNH(I1)+*RNH(I1)*RNH(I1)
SCRH(INP) = (ROH(INP) + RNH(INP))*ROH(INP)
AH(INP) = FTPI*(SCRH(INP) + RNH(INP)*RNH(INP))
DO 301 I = I1, IN

A-16

Q

Qo o000 o0

Appendix A

DIFF(I+1) = RNH(I+1)*RNH(I+1)*RNH(I+1)
SCRH(I) = (ROH(I) + RNH(I))*ROH(I)
AH(I) = FTPI*(SCRH(I) + RNH(I)*RNH(I))

301 LN(I) = FTPI*(DIFF(I+1) - DIFF(I))
Go To 500
Special Coordinates: Areas and Volumes are User Supplied .
400 Continue
Additional system independent geometric variables .
500 Do 501 I = I1, IN
501 RLN(I) = 1.0/LN(I)
LH(I1) = LN(I1)
RLH(I1) = RLN(I1)
Do 502 I = I1P, IN
LH(I) = 0.5%(LN(I) + LN(I-1))
502 RLH(I) = 0.5%(RLN(I) + RLN(I-1))
LH(INP) = LN(IN)
RLH(INP) = RLN(IN)
Do 503 I = I1, INP
503 ADUGTH(I) = AH(I)=*(RNH(I) - ROH(I))
Return
End

Subroutine RESIDIFF (DIFFA)

Description: Allows the user to give FCT some residual numerical
diffusion by making the anti-diffusion coefficient smaller.
Arguments:

DIFFA Real Replacement residual diffusion coefficient I

Defaults to 0.999 but could be as high as 1.0000

Implicit NONE

Integer NPT

Real DIFFA
Parameter (NPT = 202)

/FCT_MISC/ Holds the source array and diffusion coefficient
Real SOURCE(NPT) , DIFF1
Common /FCT_MISC/ SOURCE, DIFF1
DIFF1 = DIFFA

Return
End

Subroutine SET_GRID (RADR, I1, IN)

QOO0 0O00O0

Q

Appendix A

Description: This subroutine includes the radial factor in the
cell volume for polar coordinates. It must be preceeded by a call
to MAKE_GRID with ALPHA = 1 to establish the angular dependence of

the

cell volumes and areas and a call to COPY_GRID to save this

angular degendence. The angular coordinate is measured in radian

(0 to 2 pi

in cylindrical coordinates and cos theta (1 to -1) in

spherical coordinates. SET_GRID is called inside the loop over
radius in a multidimensional model to append the appropriate
radial factors when integrating in the angular direction.

Arguments:

RADR Real radius of cell center
I1 Integer first cell index

IN Integer last cell index

S

&

Implicit NONE

Integer NPT, I1, I1P, I, IN, INP
Real RADR

Parameter (NPT = 202)

/OLD_GRID/ Holds geometry, grid, area and volume information

Real LOP(NPT), LNP(NPT), AHP (NPT)
Real RLNP (NPT) , RLHP (NPT) , LHP (NPT)
Real ROHP (NPT) , RNHP (NPT) , ADUGTHP (NPT)
Common /OLD_GRID/ LOP, LNP, AHP, RLNP, LHP, RLHP,
ROHP, RNHP, ADUGTHP
/FCT_GRID/ Holds geometry, grid, area and volume information
Real LO(NPT), LN(NPT) , AH (NPT)
Real RLN(NPT) , LH (NPT), RLH(NPT)
Real ROH(NPT) , RNH(NPT) , ADUGTH(NPT)

Common /FCT_GRID/ LO, LN, AH, RLN, LH, RLH, ROH, RNH, ADUGTH

Multiply each volume element by the local radius

100

DO 100 I = I1, IN
LN(I) LNP(I)*RADR
LO(I) LOP(I)*RADR

Additional system independent geometric variables .

502

Do 501 I = I1, IN
RLN(I) = 1.0/LN(I)
LH(I1) = LN(I1)
RLH(I1) = RLN(I1)
Do 502 I = I1P, IN
LH(I) = 0.5%(LN(I) + LN(I-1))
RLH(I) = 0.5%(RLN(I) + RLN(I-1))
LH(INP) = LN(IN)
RLH(INP) = RLN(IN)
Return
End

A-18

QOO0 0O0O0OO0

Appendix A

Subroutine ZERODIFF (IND)

Description: This Subroutine sets the FCT diffusion and anti-
diffusion parameters to zero at the specified cell interface to
inhibit unwanted diffusion across the interface. This routine is
used for inflow and outflow boundary conditions. If argument IND
is positive, the coefficients at that particular interface are
reset. If IND is negative, the list of NIND indices in INDEX are
used to reset that many interface coefficients.

Argument:
IND Integer index of interface to be reset I

Implicit NONE
Integer NPT, NINDMAX, IND, IS, I
Parameter (NPT = 202, NINDMAX = 150)

/FCT_NDEX/ Holds a scalar list of special cell information .
Real SCALARS (NINDMAX)
Integer INDEX(NINDMAX), NIND
Common /FCT_NDEX/ NIND, INDEX, SCALARS

/FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH (NPT)
Real EPSH(NPT) , VDTODR (NPT)

Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR

If (IND .gt. O) Then
NULH(IND) = 0.0
MULH (IND) 0.0
Else If (IND .le. O) Then
If (NIND.1t.1 .or. NIND.gt .NINDMAX .or. IND.eq.O) Then
Write (6,%) ’ ZERODIFF Error! IND, NIND =’, IND, NIND
Stop
End If
Do IS = 1, NIND
I = INDEX(IS)

NULH(I) = 0.0
MULH(I) = 0.0
End Do
End If
Return
End

Q

OO0 00

Subroutine ZEROFLUX (IND)

Description: This Subroutine sets all the velocity dependent FCT
parameters to zero at the specified cell interface to inhibit
transport fluxes AND diffusion of material across the interface.
This routine is needed in solid wall boundary conditions. If IND

A-19

Appendix A

c is positive, the coefficients at that particular interface are
c reset. If IND is negative, the list of NIND indices in INDEX are
o used to reset that many interface coefficients.
c
o Argument:
o IND Integer index of interface to be reset I
c
C ___
Implicit NONE
Integer NPT, NINDMAX, IND, IS, I
Parameter (NPT = 202, NINDMAX = 150)
c /FCT_NDEX/ Holds a scalar list of special cell information .
Real SCALARS (NINDMAX)
Integer INDEX(NINDMAX), NIND
Common /FCT_NDEX/ NIND, INDEX, SCALARS
c /FCT_VELO/ Holds velocity-dependent flux coefficients
Real HADUDTH(NPT), NULH(NPT), MULH (NPT)
Real EPSH(NPT) , VDTODR (NPT)
Common /FCT_VELO/ HADUDTH, NULH, MULH, EPSH, VDTODR
C ___
If (IND .gt. 0) Then
HADUDTH(IND) =
NULH(IND) = O.
MULH(IND) = O.
Else If (IND .le 0) Then
If (NIND.1lt. 1 .or. NIND. gt .NINDMAX .or. IND.eq.0) Then
Write (6,%) > ZEROFLUX Error! IND, NIND =’, IND, NIND
Stop
End If
Do IS =1, NIND
I = INDEX(IS)
HADUDTH(I) =
NULH(I) = 0.0
MULH(I) = 0.0
End Do
End If
Return
End
C

A-20

Q

[oXeNeNes NN NN Ne!

Appendix B

Program CONVECT
CONSTANT VELOCITY CONVECTION - LCPFCT Test # 1 August 1992
This program runs three periodic convection problems using LCPFCT and
the FCT utility routines . The three profiles are the square wave, a
semicirle, and a Gaussian peak. The velocity is constant in space and
time and the grid is kept stationary.
Implicit NONE
Integer NPT, NX, NXP
Parameter (NPT = 202)
Logical USE_LCP
Integer ISTEP, JSTEP, I
Integer MAXSTP, IPRINT, LOUT
Real DX, DT, VELX, TIME, XCELL
Real CSQUARE, CCIRCLE, CGAUSSP
Real ISQUARE, ICIRCLE, IGAUSSP
Real ESQUARE, ECIRCLE, EGAUSSP
Real ASQUARE(NPT), ACIRCLE(NPT), AGAUSSP(NPT)
Real SQUARE (NPT) , CIRCLE(NPT), GAUSSP (NPT)
Real XINT(NPT), VINT(NPT)
1000 Format (’1°,/,’ LCPFCT Test #1 - Constant V Convection:’,
& ? step =’, I4, ’ and TIME =’, F7.3, /, 10X,
& ’with DX =’, F6.3, ’ DT =’, F6.3, ’ and VX =’, F6.3, /)
1001 Format (° I X(I) Square exact Circle ’,
& ? exact Gaussian exact’)
1002 Format 15, 7F10.5)

1003 Format
1004 Format

1X, /, ’> Conserved sums’, 6F10.5)
> Absolute error’, F10.5, 10X, F10.5, 10X, F10.5)

NN ~

The Constant Velocity Convection control parameters are initialized.
(change here for other cases)
USE_LCP = .true. ! Use the LCPFCT routine rather than CNVFCT
NX = 50 ! Number of cells in the periodic system
DX = 1.0 I Cell size
DT = 0.2 ! Timestep for the calculation
VELX = 1.0 ! Constant X velocity, VELX*DT/DX = 0.2
MAXSTP = 501 ! Number of timesteps, two cycles of the system
LOUT = 11 ! Logical unit number of printed output device
IPRINT = 125 ! Printout frequency, fluid moves 25 cells

The grid, velocity, and three density profiles are initialized .
NXP = NX + 1
Do 1 I =1, NXP
XINT(I) FLOAT(I-1)*DX
1 VINT(I) VELX

Call PROFILE (1, TIME, SQUARE, XINT, NX, NXP, VELX)
Call PROFILE (2, TIME, CIRCLE, XINT, NX, NXP, VELX)
Call PROFILE (3, TIME, GAUSSP, XINT, NX, NXP, VELX)

B-1

Appendix B

Set residual diffusion, grid, and velocity factors in LCPFCT .
Call RESIDIFF (1.0000)
Call MAKEGRID (XINT, XINT, 1, NXP, 1)
Call VELOCITY (VINT, 1, NXP, DT)

Begin loop over timesteps .
TIME = 0.0
Do 9999 ISTEP = 1, MAXSTP

Results are printed as required .
If (MOD(ISTEP-1,IPRINT) .eq. O) Then
JSTEP = ISTEP - 1
Write (LOUT, 1000) JSTEP, TIME, DX, DT, VELX
Write (LOUT, 1001)
Call PROFILE (1, TIME, ASQUARE, XINT, NX,NXP, VELX)
Call PROFILE (2, TIME, ACIRCLE, XINT, NX,NXP, VELX)
Call PROFILE (3, TIME, AGAUSSP, XINT, NX,NXP, VELX)

ESQUARE = 0.0
ECIRCLE = 0.0
EGAUSSP = 0.0

1, NX

Do 100 I =
XCELL = XINT(I) + 0.5*DX
ESQUARE = ESQUARE + ABS(SQUARE(I) - ASQUARE(I))

ECIRCLE + ABS(CIRCLE(I) - ACIRCLE(I))

= EGAUSSP + ABS(GAUSSP(I) - AGAUSSP(I))

100 Write (LOUT, 1002) I, XCELL, SQUARE(I), ASQUARE(I),
& CIRCLE(I), ACIRCLE(I), GAUSSP(I), AGAUSSP(I)

£
a
H
oS
Q
£
[
T

Call CONSERVE (SQUARE, 1, NX, CSQUARE)
Call CONSERVE (CIRCLE, 1, NX, CCIRCLE)
Call CONSERVE (GAUSSP, 1, NX, CGAUSSP)
If (ISTEP .eq. 1) Then
ISQUARE CSQUARE
ICIRCLE CCIRCLE
IGAUSSP = CGAUSSP
End If
Write (LOUT, 1003) CSQUARE, ISQUARE, CCIRCLE, ICIRCLE,
& CGAUSSP, IGAUSSP
ESQUARE = ESQUARE/CSQUARE
ECIRCLE = ECIRCLE/CCIRCLE
EGAUSSP = EGAUSSP/CGAUSSP
Write (LOUT, 1004) ESQUARE, ECIRCLE, EGAUSSP
End If

Advance the densities one timestep using LCPFCT and CNVFCT .

If (USE_LCP) Then

Call LCPFCT (SQUARE, SQUARE, 1, NX, 0.,0.,0.,0., .true.)

Call LCPFCT (CIRCLE, CIRCLE, 1, NX, 0.,0.,0.,0., .true.)

Call LCPFCT (GAUSSP, GAUSSP, 1, NX, 0.,0.,0.,0., .true.)
Else

Call CNVFCT (SQUARE, SQUARE, 1, NX, 0.,0.,0.,0., .true.)

Call CNVFCT (CIRCLE, CIRCLE, 1, NX, 0.,0.,0.,0., .true.)

Call CNVFCT (GAUSSP, GAUSSP, 1, NX, 0.,0.,0.,0., .true.)

End If
TIME = TIME + DT

B-2

Appendix B

9999 Continue ! End of the timestep loop.

Stop
End

Subroutine PROFILE (TYPE, TIME, ARRAY, XINT, NX, NXP, VX)

This subroutine computes three different analytic density profiles
depending on the value of TYPE .

TYPE
TYPE
TYPE

1 Square wave profile between 0.0 and HEIGHT
2 Semicircular (elliptical) profile from 0.0 to HEIGHT
3 Gaussian peak profile between 0.0 and HEIGHT

The profiles are presented on a periodic domain NX cells long and a
crude integration is done within each cell to better approximate the
curved functions and to give an analytic approximation accounting for
convection across a partial cell.

QOO0 0O00Q

Implicit NONE
Integer TYPE, NX, NXP, I, K

Real ARRAY(NX), XINT(NXP), TIME, VX, SYSLEN, ARG
Real HEIGHT, X0, WIDTH, XLEFT, XK, XRIGHT, XCENT
Data HEIGHT, X0, WIDTH / 1.0, 20.0, 10.0 /

SYSLEN = XINT(NXP)
Go To (100, 200, 300), TYPE

¢ Compute the profile of the square wave .

100 XLEFT = (X0 - WIDTH) + VX*xTIME
101 If (XLEFT .gt. SYSLEN) Then
XLEFT = XLEFT - SYSLEN
Go To 101
End If
102 If (XLEFT .1t. 0.0) Then
XLEFT = XLEFT + SYSLEN
Go To 102
End If
XRIGHT = XLEFT + 2.0*WIDTH

¢ Loop over the cells in the numerical profile to be determined .
Do 120 T =1, NX
ARRAY(I) 0.0
Do 110 K =1, 10
XK = XINT(I) + 0.1%(FLOAT(K)-0.5)*(XINT(I+1) - XINT(I))
If (XK .gt. XLEFT .and. XK .1t. XRIGHT) Then
ARRAY(I) = ARRAY(I) + 0.1*xHEIGHT
Else
XK = XK + SYSLEN
If (XK .gt. XLEFT .and. XK .1t. XRIGHT) Then
ARRAY(I) = ARRAY(I) + 0.1xHEIGHT
End If
End If
110 Continue

B-3

Appendix B

120 Continue
Return

Compute the profile of the semicircle density hump .
200 XLEFT = (X0 - WIDTH) + VX*TIME
201 If (XLEFT .gt. SYSLEN) Then

XLEFT = XLEFT - SYSLEN
Go To 201

End If

XRIGHT = XLEFT + 2.0xWIDTH

202 If (XLEFT .1t. 0.0) Then

XLEFT = XLEFT + SYSLEN
Go To 202

End If

XRIGHT = XLEFT + 2.0xWIDTH

Loop over the cells in the numerical profile to be determined .
Do 220 I = 1, NX
ARRAY(I) 0.0
Do 210 K =1, 10
XK = XINT(I) + 0.1%(FLOAT(K)-0.5)*(XINT(I+1) - XINT(I))
If (XK .gt. XLEFT .and. XK .1t. XRIGHT) Then
XCENT = XLEFT + WIDTH
ARRAY(I) = ARRAY(I) + 0.1xHEIGHT*
& SQRT (1.0 - ((XK - XCENT)/WIDTH)**2)
Else
XK = XK + SYSLEN
If (XK .gt. XLEFT .and. XK .1t. XRIGHT) Then
XCENT = XLEFT + WIDTH
ARRAY(I) = ARRAY(I) + 0.1xHEIGHT*

& SQRT (1.0 - ((XK - XCENT)/WIDTH)*%*2)
End If
End If
210 Continue
220 Continue
Return

Compute the profile of the Gaussian density hump
300 XCENT = X0 + VX*TIME
301 If (XCENT .gt. SYSLEN) Then
XCENT = XCENT - SYSLEN
Go To 301
End If
302 If (XCENT .1t. 0.0) Then
XCENT = XCENT + SYSLEN
Go To 302
End If

Loop over the cells in the numerical profile to be determined .
Do 320 T =1, NX
ARRAY(I) = 0.0
Do 310 K =1, 10
XK = XINT(I) + 0.1%(FLOAT(K)-0.5)*(XINT(I+1) - XINT(I))
If (XK .gt. (XCENT + 0.5%3SYSLEN)) XK = XK - SYSLEN
If (XK .1t. (XCENT - 0.5%SYSLEN)) XK = XK + SYSLEN
ARG = 4.0%((XK - XCENT)/WIDTH) **2
ARRAY(I) = ARRAY(I) + 0.1xHEIGHT/EXP(AMIN1(30.0,ARG))
310 Continue
320 Continue

B4

Appendix B

Return
End

B-5

Appendix B

LCPFCT Test #1 - Constant V Convection: step = 125 and TIME = 25.000
with DX = 1.000 DT = 0.200 and VX = 1.000

I X(D) Square exact Circle exact Gaussian exact
1 0.50000 0.99997 1.00000 0.87922 0.83446 0.30138 0.29959
2 1.50000 0.99996 1.00000 0.83082 0.75899 0.18598 0.18597
3 2.50000 0.99973 1.00000 0.67214 0.66001 0.10652 0.10662
4 3.50000 0.94484 1.00000 0.43972 0.52391 0.05614 0.05645
5 4.50000 0.64565 1.00000 0.21917 0.29441 0.02694 0.02761
6 5.50000 0.30888 0.00000 0.07347 0.00000 0.01162 0.01247
7 6.50000 0.09164 0.00000 0.01098 0.00000 0.00444 0.00520
8 7.50000 0.00935 0.00000 0.00000 0.00000 0.00145 0.00200
9 8.50000 0.00000 0.00000 0.00000 0.00000 0.00034 0.00071
10 9.50000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00023
11 10.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00007
12 11.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002
13 12.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001
14 13.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
15 14.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
16 15.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
17 16.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
18 17.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
19 18.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
20 19.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
21 20.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
22 21.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
23 22.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
24 23.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
25 24.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
26 25.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
27 26.50000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000
28 27.50000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00001
29 28.50000 0.00000 0.00000 0.00000 0.00000 0.00002 0.00002
30 29.50000 0.00000 0.00000 0.00000 0.00000 0.00003 0.00007
31 30.50000 0.00003 0.00000 0.00006 0.00000 0.00005 0.00023
32 31.50000 0.00004 0.00000 0.00013 0.00000 0.00199 0.00071
33 32.50000 0.00027 0.00000 0.00026 0.00000 0.00350 0.00200
34 33.50000 0.05516 0.00000 0.00122 0.00000 0.00380 0.00520
35 34.50000 0.35436 0.00000 0.07445 0.00000 0.00488 0.01247
36 35.50000 0.69113 1.00000 0.27283 0.29439 0.03055 0.02761
37 36.50000 0.90836 1.00000 0.48122 0.52390 0.08288 0.05645
38 37.50000 0.99065 1.00000 0.64240 0.66000 0.11505 0.10661
39 38.50000 1.00000 1.00000 0.75278 0.75899 0.15126 0.18596
40 39.50000 1.00000 1.00000 0.83335 0.83445 0.25564 0.29959
41 40.50000 1.00000 1.00000 0.89806 0.89245 0.44938 0.44576
42 41.50000 1.00000 1.00000 0.94672 0.93625 0.67349 0.61258
43 42.50000 1.00000 1.00000 0.97553 0.96779 0.83938 0.77751
44 43.50000 1.00000 1.00000 0.98617 0.98826 0.90622 0.91146
45 44.50000 1.00000 1.00000 0.98710 0.99833 0.91104 0.98686
46 45.50000 1.00000 1.00000 0.98710 0.99834 0.91104 0.98686
47 46.50000 1.00000 1.00000 0.98710 0.98826 0.91064 0.91147
48 47.50000 1.00000 1.00000 0.96931 0.96779 0.82071 0.77752
49 48.50000 1.00000 1.00000 0.90825 0.93625 0.64027 0.61259
50 49.50000 1.00000 1.00000 0.88015 0.89245 0.45563 0.44577

Conserved sums 20.00002 20.00000 15.70970 15.70969 8.86228 8.86227
Absolute error 0.08197 0.04005 0.05631

LCPFCT Test #1 - Constant V Convection: step = 500 and TIME =100.000
with DX = 1.000 DT = 0.200 and VX = 1.000

B-6

Appendix B

I X(D) Square exact Circle exact Gaussian exact
1 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2 1.50000 0.00000 0.00000 0.00000 0.00000 0.00004 0.00000
3 2.50000 0.00000 0.00000 0.00000 0.00000 0.00011 0.00001
4 3.50000 0.00000 0.00000 0.00000 0.00000 0.00014 0.00002
5 4.50000 0.00005 0.00000 0.00000 0.00000 0.00014 0.00007
6 5.50000 0.00018 0.00000 0.00001 0.00000 0.00014 0.00023
7 6.50000 0.00065 0.00000 0.00001 0.00000 0.00019 0.00071
8 7.50000 0.00289 0.00000 0.00004 0.00000 0.00543 0.00200
9 8.50000 0.13042 0.00000 0.01387 0.00000 0.01946 0.00520
10 9.50000 0.39106 0.00000 0.11621 0.00000 0.02907 0.01247
11 10.50000 0.65869 1.00000 0.27572 0.29455 0.03172 0.02762
12 11.50000 0.85634 1.00000 0.44555 0.52397 0.03329 0.05647
13 12.50000 0.96248 1.00000 0.60186 0.66005 0.03789 0.10664
14 13.50000 0.99725 1.00000 0.73672 0.75902 0.12824 0.18600
15 14.50000 1.00000 1.00000 0.84563 0.83448 0.31265 0.29964
16 15.50000 1.00000 1.00000 0.92215 0.89247 0.53205 0.44582
17 16.50000 1.00000 1.00000 0.96265 0.93626 0.71844 0.61265
18 17.50000 1.00000 1.00000 0.97388 0.96780 0.83116 0.77758
19 18.50000 1.00000 1.00000 0.97423 0.98826 0.87123 0.91151
20 19.50000 1.00000 1.00000 0.97423 0.99834 0.87412 0.98687
21 20.50000 1.00000 1.00000 0.97275 0.99833 0.87412 0.98684
22 21.50000 1.00000 1.00000 0.96347 0.98825 0.87412 0.91142
23 22.50000 1.00000 1.00000 0.95660 0.96778 0.82358 0.77746
24 23.50000 1.00000 1.00000 0.95471 0.93623 0.66934 0.61252
25 24.50000 0.99995 1.00000 0.95370 0.89243 0.48613 0.44570
26 25.50000 0.99982 1.00000 0.92051 0.83443 0.32092 0.29954
27 26.50000 0.99935 1.00000 0.80082 0.75896 0.19435 0.18593
28 27.50000 0.99712 1.00000 0.61252 0.65996 0.10805 0.10659
29 28.50000 0.86959 1.00000 0.40154 0.52384 0.05424 0.05644
30 29.50000 0.60895 1.00000 0.21699 0.29425 0.02330 0.02760
31 30.50000 0.34132 0.00000 0.08919 0.00000 0.00746 0.01247
32 31.50000 0.14367 0.00000 0.02267 0.00000 0.00117 0.00520
33 32.50000 0.03753 0.00000 0.00152 0.00000 0.00000 0.00200
34 33.50000 0.00275 0.00000 0.00000 0.00000 0.00000 0.00071
35 34.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00023
36 35.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00007
37 36.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002
38 37.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001
39 38.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
40 39.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
41 40.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
42 41.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
43 42.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
44 43.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
45 44.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
46 45.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
47 46.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
48 47.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
49 48.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
50 49.50000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Conserved sums 20.00005 20.00000 15.70975 15.70969 8.86231 8.86227
Absolute error 0.10505 0.06677 0.10650

B-7

Q

Qo o000 00

Appendix C

Program SHOCK
PROGRESSING 1D GASDYNAMIC SHOCK - LCPFCT Test # 2 August 1992
This program runs a simple 1D gasdynamic shock through a uniform
grid using LCPFCT and its utility routines. The fluid is ideal and
inviscid with constant GAMMAO = 1.4. The boundary conditions are
specified external values on both ends of the system.
Implicit NONE
Integer NPT, ALPHA, BC1, BCN, MAXSTP, IPRINT
Parameter (NPT = 202)
Integer NX, NXP, MX, ISTEP, JSTEP, I, LOUT
Real MACH, Vo, DELTAX, DELTAT
Real RHOSUM, RHVSUM, PRESUM, ERGSUM
Real VNEW(NPT), PNEW(NPT), TNEW(NPT), XINT(NPT)
Real CSAMB, ERG_IN, ERGAMB, RELAX
Real TIME, DTMAX
Real RHO_IN, PRE_IN, VEL_IN, GAMMAO
Real RHOAMB, PREAMB, VELAMB, GAMMAM
Real RHON(NPT), RVXN(NPT), RVTIN(NPT), ERGN(NPT)
Common / ARRAYS / RHON, RVXN, RVTN, ERGN, RELAX,
& RHO_IN, PRE_IN, VEL_IN, GAMMAO,
& RHOAMB, PREAMB, VELAMB, GAMMAM
1000 Format (’1°, /, LCPFCT Test # 2 - Progressing Shock:’,
& ’ Step =’, 14, ~’ NX =2, I3, "’ DT =’, F6.3, /)
1001 Format (2X, I3, 1P6E12.4)
1002 Format (’ I Density Temperature Pressure ’,
& > Velocity Energy Interfaces’, /)

1003 Format (°0 Comnservation Sums ’, /, 5X, 1PE12.4, 12X, 3E12.4, /)

The Progressing Shock test run control parameters are specified here.
(change for other cases)
MACH = 5.0 ! Mach number of the incoming ambient flow
VO = 3.0 ! Shock speed in the lab frame
DELTAX = 1.0 ! Cell size
DELTAT = 0.05 ! Timestep for the calculation
ALPHA =1 ! (1 = Cartesian, 2 = Cylindrical, 3 = Spherical)
LOUT = 11 ! Logical unit number of printed output device
NX = 50 ! Number of cells in the computational domain
MX = 10 ! Number of cells initialized behind the shock
MAXSTP = 201 ! Maximum number of timesteps of length DELTAT
IPRINT = 50 ! Frequency of intermediate result printouts
Initialize the variables in Common for use in GASDYN .
GAMMAO = 1.4 ! Gas constant
PREAMB = 1.0 ! Ambient (unshocked) pressure on the right
RHOAMB = 1.0 ! Density of the unshocked fluid on the right
RELAX = 0.0 ! Relaxation rate, not used when BC1, BCN = 2
GAMMAM = GAMMAO - 1.0

C-1

Appendix C

The Rankine-Hugoniot conditions are set for boundaries

CSAMB = SQRT (GAMMAO*PREAMB/RHOAMB)

VELAMB = -MACH*CSAMB

VEL_IN = VELAMB*(GAMMAM + 2.0/MACH*%2)/(GAMMAO + 1.0)
RHO_IN = RHOAMB*VELAMB/VEL_IN

PRE_IN = PREAMB - RHO_IN*VEL_IN#**2 + RHOAMB*VELAMB**2
VELAMB = VELAMB + VO

VEL_IN = VEL_IN + VO

ERGAMB = PREAMB/(GAMMAO - 1.0) + O.5%RHOAMB*VELAMB**2
ERG_IN = PRE_IN/(GAMMAO - 1.0) + O.5%RHO_IN*VEL_IN**2

Define the cell interface locations and physical variables .
NXP = NX + 1
Do 10 T =1, NXP

10 XINT(I) = FLOAT(I-1)=*DELTAX
Do 20 T = MX+1, NX

RHON(I) = RHOAMB
RVXN(I) = RHOAMB*VELAMB
RVIN(I) = 0.0

20 ERGN(I) = ERGAMB

Do 30 T =1, MX

RHON(I) = RHO_IN
RVXN(I) = RHO_IN*VEL_IN
RVIN(I) = 0.0

30 ERGN(I) = ERG_IN

Begin loop over timesteps .

Call RESIDIFF (1.000)
Call MAKEGRID (XINT, XINT, 1, NXP, ALPHA)

Do 9999 ISTEP = 1, MAXSTP

The results are printed when required .

If (MOD(ISTEP-1, IPRINT) .eq. 0) Then

JSTEP = ISTEP - 1
Write (LOUT, 1000) JSTEP, NX, DELTAT
Do 40 I =1, NX

VNEW(I) = RVXN(I)/RHON(I)
PNEW(I) = GAMMAM* (ERGN(I) - 0.5%RVXN(I)*VNEW(I))
40 TNEW(I) = PNEW(I)/RHON(I)

Write (LOUT, 1002)

Write (LOUT, 1001) (I, RHON(I), TNEW(I), PNEW(I),
& VNEW(I), ERGN(I), XINT(I), I =1, NX)

Call CONSERVE (RHON, 1, NX, RHOSUM)

Call CONSERVE (PNEW, 1, NX, PRESUM)

Call CONSERVE (RVXN, 1, NX, RHVSUM)

Call CONSERVE (ERGN, 1, NX, ERGSUM)

PRESUM = PRESUM/GAMMAM

Write (LOUT, 1003) RHOSUM, PRESUM, RHVSUM, ERGSUM

End If

The FCT integration of the continuity equations is performed .

O0O000Q

QOO0 0O00

Appendix C

Call GASDYN (1, NX, BC1, BCN, DELTAT)
TIME = TIME + DELTAT

9999 Continue ! End of the loop over timesteps.

Stop
End

Subroutine GASDYN (K1, KN, BC1, BCN, DT)

This routine integrates the gasdynamic equations using the momentum
component RVRN as the direction of integration and the momentum RVIN
as the transverse direction. In 2D models the two directions of
integration are chosen by exchanging RVRN and RVIN in Common.

K1 . . . Index of the integration’s first cell

KN . . . Index of the integration’s last cell

BC1 . . . Indicates boundary condition on integration at K1
BCN . . . Indicates boundary condition on integration at K1
DT . . . Timestep for the integrations of this step

Implicit NONE

Integer NPT, K1, KiP, BC1, BCN, K, KN, KNP, IT
Parameter (NPT = 202)

Logical PBC

Real SBC1, ©SRV1, SBCN, SRVN, VRHO1, VRHON
Real VRVR1, VRVRN, VRVT1, VRVTN, VERG1, VERGN
Real MPINT(NPT), VEL(NPT), UNIT(NPT), ZERO(NPT)
Real RHOO(NPT), RVRO(NPT), RVTO(NPT), ERGO(NPT)
Real VINT(NPT), PRE(NPT), MPVINT (NPT)

Real DTSUB, DT, RELAX

Data UNIT / NPT*1.0 /, ZERQO / NPT*0.0 /

Real RHO_IN, PRE_IN, VEL_IN, GAMMAO
Real RHOAMB, PREAMB, VELAMB, GAMMAM
Real RHON(NPT), RVRN(NPT), RVIN(NPT), ERGN(NPT)
Common / ARRAYS / RHON, RVRN, RVTN, ERGN, RELAX,
& RHO_IN, PRE_IN, VEL_IN, GAMMAO,
& RHOAMB, PREAMB, VELAMB, GAMMAM

Prepare for the time integration. Index K is either I or J depending
on the definitions of RVRN and RVIN. Copies of the physical variable
are needed to recover values for the whole step integration .

KNP = KN + 1

KiP = K1 + 1

PBC = .false.

If (BCl.eq.3 .OR. BCN.eq.3) PBC = .true.
Do 50 K = K1, KN

RHOO(K) = RHON(K)
RVRO(K) = RVRN(K)
RVTO(K) = RVTN(K)
50 ERGO(K) = ERGN(K)

¢ Integrate first the half step then the whole step .

C-3

O

Qo

OO0

QOO0 000

Appendix C

Do 500 IT = 1, 2
DTSUB = 0.5*DT*FLOAT(IT)

Do

100
&

100 K = K1, KN
VEL(K) = RVRN(K)/RHON (K)
PRE(K) = GAMMAM* (ERGN (K)

0.5% (RVRN (K) **2 + RVTN(K)*%2)/RHON (X))

Calculate the interface velocities and pressures as weighted values
of the cell-centered values computed just above .

Do

200
&

200 K = Ki1+1, KN

MPVINT(K) = 1.0/(RHON(K) + RHON(K-1))

VINT(X) = (VEL(K)*RHON(K-1) + VEL(K-1)*RHON(K))*MPVINT (K)
MPINT(K) = -(PRE(K)*RHON(K-1) + PRE(K-1)*RHON(K))*MPVINT (K)
MPVINT (K) = -(PRE(K)*VEL (K)*RHON (K-1)

+ PRE(K-1)*VEL(K-1)*RHON(K))*MPVINT (K)

The unweighted interface averages can be computed as follows

200
Call the
boundary
BC1, BCN
BC1, BCN
BC1, BCN
BC1, BCN
Go
310
320
330
&
340
350 Go
410
420
430

VINT(K) = 0.5%x(VEL(K) + VEL(X-1))
MPINT(K) = -0.5%(PRE(K) + PRE(K-1))
MPVINT(K) = MPINT (K)*VINT(K)

FCT utility routines and set the boundary conditions. Other
conditions could be added for inflow, outflow, etc

1 => ideal solid wall or axis boundary condition

2 => an extrapolative outflow boundary condition

3 => periodic boundary conditions . . .

4 => gpecified boundary values (e.g. shock tube problem)

To (310, 320, 330, 340), BC1
VINT(K1) = 0.0
MPINT(K1) = - PRE(K1)
MPVINT (K1) = 0.0
Go To 350
VINT(K1) = VEL(K1)*(1.0 - RELAX)
MPINT(K1) = - PRE(K1)*(1.0 - RELAX) - RELAX*PRE_IN
MPVINT (K1) = MPINT(XK1)*VINT (K1)
Go To 350
MPVINT(K1) = 1.0/(RHON(K1) + RHON(KN))
VINT(K1) = (VEL(XK1)*RHON(KN)+VEL(KN)*RHON(K1)) *MPVINT(K1)
MPINT(K1) = -(PRE(K1)*RHON(KN)+PRE (KN)*RHON (K1))*MPVINT (K1)
MPVINT (K1) = -(PRE(K1)*VEL(K1)*RHON(KN)
+ PRE(KN) *VEL (KN) *RHON (K1)) *MPVINT (K1)
Go To 350
VINT(K1) = VEL_IN
MPINT(K1) = - PRE_IN
MPVINT (K1) = - PRE_IN*VEL_IN
To (410, 420, 430, 440), BCN
VINT(KNP) = 0.0
MPINT(KNP) = - PRE(KN)
MPVINT (KNP) = 0.0
Go To 450
VINT(KNP) = VEL(KN)*(1.0 - RELAX)
MPINT(KNP) = - PRE(KN)*(1.0 - RELAX) - RELAX*PREAMB
MPVINT (KNP) = MPINT (KNP)*VINT (KNP)
Go To 450
VINT (KNP) = VINT(K1)
MPINT(KNP) = MPINT (K1)

C-4

QO OO0

Appendix C

MPVINT (KNP) = MPVINT (K1)

Go To 450

440 VINT (KNP) = VELAMB
MPINT(KNP) = - PREAMB
MPVINT (KNP) = - PREAMB*VELAMB

450 Continue

The velocity dependent FCT coefficients are set and the boundary
condition calculations are completed. Here the periodic boundary
conditions require no action as (S)lope and (V)alue boundary value
specifiers are ignored in LCPFCT when PBC = .true.

Call VELOCITY (VINT, K1, KNP, DTSUB)

Go To (510, 520, 550, 540), BC1

510 Call ZEROFLUX (K1)

SBC1 1.0

SRV1

VRHO1

VRVR1

VRVT1

VERG1

Go To
520 Call Z

|
[N
o

oo XY
OO';UOO';UD—H—\OOOOOO

FF (K1)
- RELAX
- RELAX

E AX*RHO_IN

ELAX*PRE _IN/GAMMAM

oy
o L_'OOL_'OOH [eXeooRex

540 SBC1

O
O

RHO IN

RHO_IN*VEL_IN

0.0

PRE_IN/GAMMAM + 0.5*RHO_IN*VEL_IN**2

92!
o8]
Q
[
L L | | (| (| {1 2 6 | T [I

VERG1

550 Go To (610, 620, 650, 640), BCN
610 Call ZEROFLUX (KNP)
SBCN 1 0
SRVN
VRHON
VRVRN
VRVTN
VERGN
Go To
620 Call Z
SBCN
SRVN
VRHON
VRVRN
VRVTN
VERGN
Go To
640 SBCN
SRVN
VRHON
VRVRN
VRVTN
VERGN

D
OO;UOO’;UI—LI—LDOOOOOI—\
O I._'OOI._'OOI—I OOOOO

FF (KNP)
- RELAX
- RELAX
FLAX*RHOAMB

E AX+PREAMB/GAMMAM

[y

0.0

RHOAMB

RHOAMB*VELAMB

0.0

PREAMB/GAMMAM + 0.5*xRHOAMB*VELAMB**2

L L [o> N [| [T . > | I T

C-5

Appendix C

650 Continue
Integrate the continuity equations using LCPFCT .

Call LCPFCT (RHOO, RHON, K1,KN, SBC1,VRHO1, SBCN,VRHON, PBC)

Call SOURCES(K1,KN, DTSUB, 5, UNIT, MPINT,
& MPINT (K1), MPINT(XNP))

Call LCPFCT (RVRO, RVRN, K1,KN, SRV1,VRVR1, SRVN,VRVRN, PBC)
Call LCPFCT (RVTO, RVTN, K1,KN, SBC1,VRVT1, SBCN,VRVIN, PBC)

Call SOURCES(K1,KN, DTSUB, 4, UNIT, MPVINT,
& MPVINT (K1), MPVINT(KNP))

Call LCPFCT (ERGO, ERGN, K1,KN, SBC1,VERG1, SBCN,VERGN, PBC)
500 Continue | End of halfstep-wholestep loop.

Return
End

C-6

Appendix C

LCPFCT Test # 2 - Progressing Shock:

H

OCONOOIPWN -

Conservation Sums
9.

PR RRPRRPRRPRPRPRPERRPRRPRPRPRBERPRRERPRPRERPRRPRPRPERRERPRRPERERLROCIOIOIOIOIOIOoO

Density Temperature

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

0000E+01

PR RRRRPRrRPRPRRRRPRRPRPRPERRRRPRRPRERRPRRPRRPRERRPRRPRRPEPRRERLROICIOIOIOIOIOIOIOTO

.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.8000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

o e e R R e e e e e e e e e e e R R R R R = = = DD NN NN NDNNDNDN

0

Pressure

.9000E+01
.9000E+01
.9000E+01
.9000E+01
.9000E+01
.9000E+01
.9000E+01
.9000E+01
.9000E+01
.9000E+01
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

.2500E+02

LCPFCT Test # 2 - Progressing Shock:

C-7

S

G Y Ty T ey

S

tep= O
Velocity

.8168E+00
.8168E+00
.8168E+00
.8168E+00
.8168E+00
.8168E+00
.8168E+00
.8168E+00
.8168E+00
.8168E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00

.5804E+01

tep = 150

[oNoNoNoNoNoloolololo oo oo oo ool oo oo oo o o o o o o Yo Yo Ne Ne o) No) Ne) Ne) Ne oo NeoNeo Moo Neo oo Moo Mo o Ne o)

NX = 50
Energy

.0752E+01
.0752E+01
.0752E+01
.0752E+01
.0752E+01
.0752E+01
.0752E+01
.0752E+01
.0752E+01
.0752E+01
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
. 7518E+00
. 7518E+00
. 7518E+00
. 7518E+00
. 7518E+00
. 7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00

.0776E+03

NX = 50

DT

= 0.050

Interfaces

AP PADAPRAPRPOWWWWWWWWWNNNNNNNNNNNRRPRRRRPRPRRPRPRPRPRPOONOOOPRPWNR,O

DT

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01

= 0.050

H

OCONOOPWN -

GGG 7o M e X (o N (o N S I N NG NG O U O N NG NGO O O N NGO NGO OO N NG NGO N O N N N N O N O O NN

Density Temperature

.9983E+00
.9983E+00
.9980E+00
.9974E+00
.9969E+00
.9962E+00
.9968E+00
.9963E+00
.9949E+00
.9946E+00
.9941E+00
.9937E+00
.9936E+00
.9933E+00
.9929E+00
.9929E+00
.9929E+00
.9929E+00
.9929E+00
.9931E+00
.9932E+00
.9932E+00
.9937E+00
.9938E+00
.9946E+00
.9946E+00
.9946E+00
.9948E+00
.9954E+00
.9954E+00
.9954E+00
.9948E+00
.1692E+00
.9995E-01
.9981E-01
.9981E-01
.9993E-01
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

el ol el el el el el el ol (e R{e Re NG NG NG N N N Ne RO RO RO RO N N N RO NGO RO RO RO NGO NG RO RO RO NG RO N N N Ne Nea Nea e

. 7992E+00
. 7992E+00
.7991E+00
. 7988E+00
. 7986E+00
. 7983E+00
. 7980E+00
. 7979E+00
.7T97TE+00
. 7973E+00
. 7973E+00
. 7T972E+00
. 7T969E+00
.7967E+00
. 7T969E+00
. 7T967E+00
. 7T966E+00
. 7T966E+00
. 7T966E+00
. 7T968E+00
. 7T969E+00
.7T976E+00
. 7T983E+00
. 7T989E+00
. 7994E+00
.8013E+00
.8018E+00
.8020E+00
.8049E+00
.8072E+00
.8074E+00
.8091E+00
.6326E+00
.9907E-01
.9897E-01
.9950E-01
.0001E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

Conservation Sums
1.8000E+02

PRPRPRPRPRPRPRPRPRPRPRPRPPRPPRPRPRPOOORNNDNNNNNDNNNNNDNNNNNNDNNNDNNDNNNDNNDNNDNNN

N

Appendix C

Pressure

.8986E+01
.8986E+01
.8984E+01
.8979E+01
.8975E+01
.8970E+01
.8966E+01
.8962E+01
.8968E+01
.8965E+01
.8952E+01
.8950E+01
.8947E+01
.8945E+01
.8944E+01
.8942E+01
.8942E+01
.8942E+01
.8942E+01
.8944E+01
.8945E+01
.8949E+01
.895bE+01
.8958E+01
.8966E+01
.8975E+01
.8977E+01
.8980E+01
.8998E+01
.9009E+01
.9010E+01
.9015E+01
.7851E+01
.9902E-01
.9878E-01
.9931E-01
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

.4044E+03

LCPFCT Test # 2 - Progressing Shock:

I Density Temperature

Pressure

C-8

O R S b S s b S S S e

S

Velocity

.8177E+00
.8177E+00
.8179E+00
.8183E+00
.8186E+00
.8189E+00
.8191E+00
.8194E+00
.8197E+00
.8199E+00
.8201E+00
.8203E+00
.8205E+00
.8206E+00
.8208E+00
.8208E+00
.8209E+00
.8209E+00
.8208E+00
.8208E+00
.8206E+00
.8203E+00
.8201E+00
.8196E+00
.8191E+00
.8186E+00
.8186E+00
.8178E+00
.8173E+00
.8172E+00
.8171E+00
.8159E+00
.4539E-01
.9166E+00
.9170E+00
.9166E+00
.9162E+00
.9160E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00

.4420E+02

tep = 200

Velocity

DO O 0000 00 00 0000000000 000000 0000000000 00000000 00000000000 Co 00 0o 0o

Energy

.0724E+01
.0723E+01
.0719E+01
.0708E+01
.0701E+01
.0689E+01
.0680E+01
.0674E+01
.0666E+01
.0659E+01
.0653E+01
.0648E+01
.0643E+01
.0638E+01
.0636E+01
.0632E+01
.0632E+01
.0632E+01
.0632E+01
.0637E+01
.0638E+01
.0645E+01
.0659E+01
.0663E+01
.0678E+01
.0697E+01
.0703E+01
.0702E+01
.0744E+01
.0771E+01
.0773E+01
.0773E+01
.6043E+01
. 7506E+00
. 7506E+00
. 7507E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00

.T426E+03

NX = 50

Energy

Interfaces

DR DSDMBADMDBEDEDBRPPODLWWWWWWWWWNNNNNNNNDNNNNRRRPRPRERPRRRRPRPOONOOOPRWNRF,O

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01

DT = 0.050

Interfaces

OCONOOIPWN -

Conservation Sums
2.

NN 7o X Yo R = X S N NG NG O N G QY QY O O N NG OO O N NG OO O O N NGO OO OO N NG NGO O O N N N N O N NG QT '

.9968E+00
.9967E+00
.9966E+00
.9959E+00
.9966E+00
.9951E+00
.9948E+00
.9942E+00
.9939E+00
.9937E+00
.9932E+00
.9931E+00
.9930E+00
.9929E+00
.9929E+00
.9930E+00
.9930E+00
.9932E+00
.9936E+00
.9940E+00
.9947E+00
.9955E+00
.9963E+00
.9971E+00
.9981E+00
.9981E+00
.9988E+00
.9996E+00
.9997E+00
.9996E+00
.9996E+00
.9996E+00
.9990E+00
.9987E+00
.9980E+00
.9979E+00
.9977E+00
.9977E+00
.9942E+00
.9107E+00
.2490E+00
.99565E-01
.9955E-01
.9971E-01
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

1000E+02

PRPPRPRPRPRPRPPOOONOIOOCIOCIOTIonToTnoIono oI oTorO1o1 o1 o101

. 7985E+00
. 7T985E+00
. 7985E+00
. 7981E+00
. 7980E+00
.7T97TE+00
. 7976E+00
.7T974E+00
. 7972E+00
. 7970E+00
. 7970E+00
. 7968E+00
.7967E+00
.7T967E+00
. 7T967E+00
.7T967E+00
. 7968E+00
. 7T969E+00
. 7T969E+00
.7T973E+00
. 7T974E+00
. 7980E+00
.7981E+00
. 7T987TE+00
. 7990E+00
. 7T996E+00
.8005E+00
.8007E+00
.8020E+00
.8025E+00
.8039E+00
.8050E+00
.8061E+00
.8069E+00
.8080E+00
.8084E+00
.8088E+00
.8083E+00
.8118E+00
.8264E+00
.4009E+00
.9660E-01
.9832E-01
.9942E-01
.0001E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

PR RPRPPRPPRPPRPOQOQONNNNNNNNDNDNNDN

N

Appendix C

.8974E+01
.8973E+01
.8973E+01
.8967E+01
.8964E+01
.8960E+01
.8968E+01
.8963E+01
.8951E+01
.8948E+01
.8946E+01
.8944E+01
.8943E+01
.8943E+01
.8943E+01
.8943E+01
.8943E+01
.8945E+01
.8947E+01
.8952E+01
.8957E+01
.8964E+01
.8969E+01
.8977E+01
.8984E+01
.8987E+01
.899bE+01
.9002E+01
.9008E+01
.9010E+01
.9017E+01
.9022E+01
.9025E+01
.9027E+01
.9028E+01
.9030E+01
.9030E+01
.9028E+01
.9025E+01
.8612E+01
.9988E+00
.9616E-01
.9788E-01
.9912E-01
.0001E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00

.9269E+03

C-9

O S S Y Sy SN

.8186E+00
.8186E+00
.8187E+00
.8191E+00
.8193E+00
.8196E+00
.8198E+00
.8200E+00
.8202E+00
.8204E+00
.8206E+00
.8207E+00
.8208E+00
.8208E+00
.8208E+00
.8208E+00
.8208E+00
.8207E+00
.8204E+00
.8201E+00
.8198E+00
.8194E+00
.8188E+00
.8185E+00
.8181E+00
.8175E+00
.8171E+00
.8168E+00
.8163E+00
.8158E+00
.8156E+00
.8152E+00
.8153E+00
.8148E+00
.8147E+00
.8147E+00
.8148E+00
.8153E+00
. 7854E+00
.8047E+00
.0546E+00
.9194E+00
.9179E+00
.9168E+00
.9160E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00
.9161E+00

.3419E+02

DO~ 00 000000000000 00000000 0000000000 000000 000000000000 0000000000000 0000 OO0 0o 0o

.0698E+01
.0696E+01
.0696E+01
.0683E+01
.0678E+01
.0669E+01
.0665E+01
.0655E+01
.0650E+01
.0645E+01
.0640E+01
.0636E+01
.0634E+01
.0634E+01
.0634E+01
.0634E+01
.0634E+01
.0638E+01
.0642E+01
.0652E+01
.0662E+01
.0677E+01
.0686E+01
.0704E+01
.0720E+01
.0723E+01
.0741E+01
.0755E+01
.0768E+01
.0767E+01
.0784E+01
.0793E+01
.0798E+01
.0800E+01
.0800E+01
.0804E+01
.0805E+01
.0805E+01
.0522E+01
.9527E+01
.0133E+01
. 7498E+00
. 7T498E+00
. 7505E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00
.7518E+00

.2976E+03

SRS DMBADMBEDEDDBERPPODLWWWWWWWWWNNNNNNNNNDNNNNRRPRPRPRERPRRRRPOONOOPRWNEO

.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01
.0000E+01
.1000E+01
.2000E+01
.3000E+01
.4000E+01
.5000E+01
.6000E+01
.7000E+01
.8000E+01
.9000E+01

Q

Qo000 00

Appendix D

Program DIAPHRAGM
1D BURSTING DIAPHRAGM PROBLEM - LCPFCT Test # 3 August 1992
This program runs a very simple 1D bursting diaphragm test problem
using LCPFCT and its utility routines. The fluid is ideal and
inviscid with constant GAMMA = 1.667. The end walls are reflecting
so the fluid should be totally contained in the domain.
Implicit NONE
Integer NPT, ALPHA, BC1, BCN, MAXSTP, IPRINT
Parameter (NPT = 202)
Integer NX, NXP, MX, ISTEP, JSTEP, I, LOUT
Real TIME, DELTAX, DELTAT, DX_JIGGLE
REAL XGRID(NPT), XNEXT(NPT), DXOFF, DX_0SC
Real RHOSUM, RHVSUM, PRESUM, ERGSUM
Real VNEW(NPT), PNEW(NPT), TNEW(NPT)
Real VELX, VXPAND, SCALEG
Real ERG_IN, ERGAMB, RELAX
Real RHO_IN, PRE_IN, VEL_IN, GAMMAO
Real RHOAMB, PREAMB, VELAMB, GAMMAM
Real RHON(NPT), RVXN(NPT), RVTIN(NPT), ERGN(NPT)
Common / ARRAYS / RHON, RVXN, RVTN, ERGN, RELAX,
& RHO_IN, PRE_IN, VEL_IN, GAMMAO,
& RHOAMB, PREAMB, VELAMB, GAMMAM
1000 Format (’1°, /, ° LCPFCT Test # 3 - Bursting Diaphragm:’,
& ? Step =7, 14, °’ NX =7, I3, ° DT =’, F6.3, /)
1001 Format (2X, I3, 6F12.5)
1002 Format (° I Density Temperature Pressure ’,
& > Velocity Energy Interfaces’, /)

1003 Format (’0 Conservation Sums ’, /, 5X, F12.5, 12X, 3F12.5, /)

The Bursting Diaphragm run control parameters are specified here.

(change for other cases)
DELTAX = 1.0 ! Cell size
DELTAT = 0.05 ! Timestep for the calculation
ALPHA = 1 ! (1 = Cartesian, 2 = Cylindrical, 3 = Spherical)
LOUT = 11 ! Logical unit number of printed output device
NX = 100 ! Number of cells in the computational domain
MX = 60 ! Number of cells initialized behind the shock
MAXSTP = 1601 ! Maximum number of timesteps of length DELTAT
IPRINT = 50 ! Frequency of intermediate result printouts
Initialize the variables in Common for use in GASDYN .
RHO_IN = 1.0 | ITnitial mass density behind the diaphragm
PRE_IN = 10.0 ! Initial (higher) pressure behind the diaphragm
VEL_IN = 0.0 ! Initial velocity
VXPAND = 3.1 ! Characteristic system expansion velocity
DX_0SC = 0.125 ! Amplitude of the grid jiggling after step 200
GAMMAO = 1.66667 ! Gas constant

D-1

Qo o000 o0

Appendix D

PREAMB = 1.0 ! Ambient (unshocked) pressure on the right
RHOAMB = 1.0 ! Density of the unshocked fluid on the right
VELAMB = 0.0 ! Initial velocity

RELAX = 0.002 ! Relaxation rate, used when BC1, BCN = 2
GAMMAM = GAMMAO - 1.0

ERGAMB = PREAMB/(GAMMAO - 1.0) + 0.5*RHOAMB*VELAMBx**2

ERG_IN = PRE_IN/(GAMMAO - 1.0) + 0.5*RHO_IN*VEL_IN**2

Set up the fluid variables with the diaphragm at interface MX+1

Do 10 I = MX+1, NX

RHON(I) = RHOAMB
RVXN(I) = RHOAMB*VELAMB
RVIN(I) = 0.0

10 ERGN(I) = ERGAMB

Do 20 I =1, MX

RHON(I) = RHO_IN
RVXN(I) = RHO_IN*VEL_IN
RVIN(I) = 0.0

20 ERGN(I) = ERG_IN

Begin loop over timesteps .

Call RESIDIFF (0.998)

TIME = 0.0
Do 9999 ISTEP = 1, MAXSTP

Define the cell interface locations and physical variables. The grid
is expanded at the rate VELX at I = NXP after step 201 (as the shock
approaches the boundary) by making XNEXT at the end of the timestep
proportionately larger than XGRID at the beginning of the step. The
system length is then renormalized to its original size, capturing
the similarity solution by equating the grid expansion to the shock
velocity. A small jiggle is added to this systematic expansion to
show the added flexibility of the continuity solver.
NXP = NX + 1
If (ISTEP .gt. 200) Then
VELX = VXPAND
DXOFF = DX_0SC

If (MOD(ISTEP,2) .eq. O) DXOFF = - DX_0SC
Else

VELX = 0.0

DXOFF = 0.0
End If

Do 30 I = 1, NXP
XGRID(I) = FLOAT(I-MX-1)*DELTAX
30 XNEXT(I) = XGRID(I)
SCALEG = (VELX*DELTAT + XGRID(NXP))/XGRID(NXP)
Do 40 I = 3, NX-2
XNEXT(I) (XNEXT(I) + DXOFF)*SCALEG
40 XGRID(I) XGRID(I) - DXOFF

Call MAKEGRID (XGRID, XNEXT, 1, NXP, ALPHA)

The results are printed when required .

Appendix D

If (MOD(ISTEP-1, IPRINT) .eq. 0) Then
JSTEP = ISTEP - 1
IPRINT = 2% (ISTEP - 1)
If (ISTEP .1t. 200) IPRINT = 50
Write (LOUT, 1000) JSTEP, NX, DELTAT
Do 50 I =1, NX

VNEW(I) = RVXN(I)/RHON(I)
PNEW(I) = GAMMAM*(ERGN(I) - O.5%RVXN(I)*VNEW(I))
50 TNEW(I) = PNEW(I)/RHON(I)

Write (LOUT, 1002)
Write (LOUT, 1001) (I, RHON(I), TNEW(I), PNEW(I),
& VNEW(I), ERGN(I), XGRID(I), I =1, NX)

Call CONSERVE (RHON, 1, NX, RHOSUM)

Call CONSERVE (PNEW, 1, NX, PRESUM)

Call CONSERVE (RVXN, 1, NX, RHVSUM)

Call CONSERVE (ERGN, 1, NX, ERGSUM)

Write (LOUT, 1003) RHOSUM, PRESUM, RHVSUM, ERGSUM

End If

The FCT integration of the continuity equations is performed .

Call GASDYN (1, NX, BC1l, BCN, DELTAT)
TIME = TIME + DELTAT

9999 Continue ! End of the loop over timesteps.

Stop
End

D-3

Appendix D

LCPFCT Test # 3 - Bursting Diaphragm: Step = 0 NX =100 DT = 0.050
I Density Temperature Pressure Velocity Energy Interfaces
1 1.00000 10.00000 10.00000 0.00000 14.99993 -60.00000
2 1.00000 10.00000 10.00000 0.00000 14.99993 -59.00000
3 1.00000 10.00000 10.00000 0.00000 14.99993 -58.00000
4 1.00000 10.00000 10.00000 0.00000 14.99993 -57.00000
5 1.00000 10.00000 10.00000 0.00000 14.99993 -56.00000
6 1.00000 10.00000 10.00000 0.00000 14.99993 -55.00000
7 1.00000 10.00000 10.00000 0.00000 14.99993 -54.00000
8 1.00000 10.00000 10.00000 0.00000 14.99993 -53.00000
9 1.00000 10.00000 10.00000 0.00000 14.99993 -52.00000
10 1.00000 10.00000 10.00000 0.00000 14.99993 -51.00000
11 1.00000 10.00000 10.00000 0.00000 14.99993 -50.00000
12 1.00000 10.00000 10.00000 0.00000 14.99993 -49.00000
13 1.00000 10.00000 10.00000 0.00000 14.99993 -48.00000
14 1.00000 10.00000 10.00000 0.00000 14.99993 -47.00000
15 1.00000 10.00000 10.00000 0.00000 14.99993 -46.00000
16 1.00000 10.00000 10.00000 0.00000 14.99993 -45.00000
17 1.00000 10.00000 10.00000 0.00000 14.99993 -44.00000
18 1.00000 10.00000 10.00000 0.00000 14.99993 -43.00000
19 1.00000 10.00000 10.00000 0.00000 14.99993 -42.00000
20 1.00000 10.00000 10.00000 0.00000 14.99993 -41.00000
21 1.00000 10.00000 10.00000 0.00000 14.99993 -40.00000
22 1.00000 10.00000 10.00000 0.00000 14.99993 -39.00000
23 1.00000 10.00000 10.00000 0.00000 14.99993 -38.00000
24 1.00000 10.00000 10.00000 0.00000 14.99993 -37.00000
25 1.00000 10.00000 10.00000 0.00000 14.99993 -36.00000
26 1.00000 10.00000 10.00000 0.00000 14.99993 -35.00000
27 1.00000 10.00000 10.00000 0.00000 14.99993 -34.00000
28 1.00000 10.00000 10.00000 0.00000 14.99993 -33.00000
29 1.00000 10.00000 10.00000 0.00000 14.99993 -32.00000
30 1.00000 10.00000 10.00000 0.00000 14.99993 -31.00000
31 1.00000 10.00000 10.00000 0.00000 14.99993 -30.00000
32 1.00000 10.00000 10.00000 0.00000 14.99993 -29.00000
33 1.00000 10.00000 10.00000 0.00000 14.99993 -28.00000
34 1.00000 10.00000 10.00000 0.00000 14.99993 -27.00000
35 1.00000 10.00000 10.00000 0.00000 14.99993 -26.00000
36 1.00000 10.00000 10.00000 0.00000 14.99993 -25.00000
37 1.00000 10.00000 10.00000 0.00000 14.99993 -24.00000
38 1.00000 10.00000 10.00000 0.00000 14.99993 -23.00000
39 1.00000 10.00000 10.00000 0.00000 14.99993 -22.00000
40 1.00000 10.00000 10.00000 0.00000 14.99993 -21.00000
41 1.00000 10.00000 10.00000 0.00000 14.99993 -20.00000
42 1.00000 10.00000 10.00000 0.00000 14.99993 -19.00000
43 1.00000 10.00000 10.00000 0.00000 14.99993 -18.00000
44 1.00000 10.00000 10.00000 0.00000 14.99993 -17.00000
45 1.00000 10.00000 10.00000 0.00000 14.99993 -16.00000
46 1.00000 10.00000 10.00000 0.00000 14.99993 -15.00000
47 1.00000 10.00000 10.00000 0.00000 14.99993 -14.00000
48 1.00000 10.00000 10.00000 0.00000 14.99993 -13.00000
49 1.00000 10.00000 10.00000 0.00000 14.99993 -12.00000
50 1.00000 10.00000 10.00000 0.00000 14.99993 -11.00000
51 1.00000 10.00000 10.00000 0.00000 14.99993 -10.00000
52 1.00000 10.00000 10.00000 0.00000 14.99993 -9.00000
53 1.00000 10.00000 10.00000 0.00000 14.99993 -8.00000
54 1.00000 10.00000 10.00000 0.00000 14.99993 -7.00000
55 1.00000 10.00000 10.00000 0.00000 14.99993 -6.00000
56 1.00000 10.00000 10.00000 0.00000 14.99993 -5.00000
57 1.00000 10.00000 10.00000 0.00000 14.99993 -4.00000

D-4

58 1.00000
59 1.00000
60 1.00000
61 1.00000
62 1.00000
63 1.00000
64 1.00000
65 1.00000
66 1.00000
67 1.00000
68 1.00000
69 1.00000
70 1.00000
71 1.00000
72 1.00000
73 1.00000
74 1.00000
75 1.00000
76 1.00000
77 1.00000
78 1.00000
79 1.00000
80 1.00000
81 1.00000
82 1.00000
83 1.00000
84 1.00000
85 1.00000
86 1.00000
87 1.00000
88 1.00000
89 1.00000
90 1.00000
91 1.00000
92 1.00000
93 1.00000
94 1.00000
95 1.00000
96 1.00000
97 1.00000
98 1.00000
99 1.00000
100 1.00000

Conservation Sums

100.00000

PR RRRRPRPEPRRRRPRRPERRRRPRREERRRRRPBRERRRPBREBREERRRS B

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

Appendix D

RPRRRRRERRRPRRRRPRRERRERRERRRPRRRRERRERRBRRPRRRRERERER B RE R

640.

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

00000

LCPFCT Test # 3 - Bursting Diaphragm:

—

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

QOWO~NOPWN -
PR RRR R R

-

Density Temperature

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

Pressure

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

D-5

[eleoolololooJololololoXoloJolololololololooloJololoJoloJololoJolooJo oo oY oo o o

0.
Step = 100

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

00000

Velocity

[eleololoJololololoXe]

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

14.99993
14.99993
14.99993
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999

e e el e e e e e el e el el el ol e o e e N N e e e e N

959.99609
NX =100
Energy

14.99993
14.99993
14.99993
14.99993
14.99993
14.99993
14.99993
14.99993
14.99993
14.99993

DT =

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

0.050

Interfaces

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

(AN leleoleolololololololoJololololololololoolololololololololololololololoXo ol N il ol ol i ol el) i ol ol ol

Appendix D

.00000 10.00000 10.00000 0.00000 14.99993 -50.00000
.00000 10.00000 10.00000 0.00000 14.99993 -49.00000
.00000 10.00000 10.00000 0.00000 14.99993 -48.00000
.00000 10.00000 10.00000 0.00000 14.99993 -47.00000
.00000 10.00000 10.00000 0.00000 14.99993 -46.00000
.00000 10.00000 10.00000 0.00000 14.99993 -45.00000
.00000 10.00000 10.00000 0.00000 14.99993 -44.00000
.00000 10.00000 10.00000 0.00000 14.99993 -43.00000
.00000 10.00000 10.00000 0.00000 14.99993 -42.00000
.00000 10.00000 10.00000 0.00000 14.99993 -41.00000
.00000 10.00000 10.00000 0.00000 14.99993 -40.00000
.00000 10.00000 10.00000 0.00000 14.99993 -39.00000
.00000 10.00000 10.00000 0.00000 14.99993 -38.00000
.00000 10.00000 10.00000 0.00000 14.99993 -37.00000
.00000 10.00000 10.00000 0.00000 14.99993 -36.00000
.00000 10.00000 10.00000 0.00000 14.99993 -35.00000
.00000 10.00000 10.00000 0.00000 14.99993 -34.00000
.00000 10.00000 10.00000 0.00000 14.99993 -33.00000
.00000 9.99999 9.99998 0.00000 14.99990 -32.00000
.00000 9.99999 9.99999 0.00001 14.99991 -31.00000
.99999 9.99994 9.99987 0.00001 14.99972 -30.00000
.99998 9.99989 9.99973 0.00007 14.99952 -29.00000
.99997 9.99983 9.99958 0.00025 14.99929 -28.00000
.99980 9.99869 9.99673 0.00023 14.99501 -27.00000
.99982 9.99882 9.99706 0.00228 14.99552 -26.00000
.99848 9.98987 9.97468 0.00208 14.96196 -25.00000
.99862 9.99070 9.97689 0.01654 14.96540 -24.00000
.98965 9.93141 9.82857 0.01511 14.74290 -23.00000
.98994 9.93077 9.83089 0.09434 14.75067 -22.00000
.96048 9.73635 9.35154 0.10614 14.03265 -21.00000
.94729 9.64314 9.13489 0.22795 13.72688 -20.00000
.92858 9.51687 8.83722 0.36219 13.31668 -19.00000
.88410 9.21075 8.14319 0.40569 12.28747 -18.00000
.86856 9.10424 7.90762 0.58334 12.00915 -17.00000
.847TT 8.95951 7.59559 0.73331 11.62127 -16.00000
.80170 8.62583 6.91531 0.77048 10.61088 -15.00000
. 78551 8.52980 6.70027 0.94461 10.40081 -14.00000
. 76956 8.39281 6.45878 1.11127 10.16330 -13.00000
12772 8.10673 5.89866 1.17294 9.34854 -12.00000
.70716 7.93358 5.61027 1.28551 8.99967 -11.00000
.69716 7.89671 5.50627 1.44648 8.98721 -10.00000
.67841 7.68775 5.215643 1.49895 8.585624 -9.00000
.66366 7.64411 5.07310 1.52963 8.38602 -8.00000
.66272 7.62325 5.05210 1.56000 8.38452 -7.00000
.66338 7.605689 5.04558 1.57740 8.39363 -6.00000
.66483 7.59057 5.04644 1.57395 8.39312 -5.00000
.66562 7.59281 5.05392 1.56228 8.39313 -4.00000
.66652 7.62785 5.08409 1.55166 8.42847 -3.00000
.66669 7.68111 5.12091 1.54293 8.47489 -2.00000
.66513 7.73356 5.14382 1.51090 8.47487 -1.00000
.65147 7.83471 5.10405 1.54063 8.42918 0.00000
.65036 7.81949 5.08548 1.54358 8.40298 1.00000
.65034 7.805626 5.07610 1.54576 8.39107 2.00000
.65080 7.79762 5.07468 1.54735 8.39108 3.00000
.65583 7.78186 5.10358 1.53769 8.43069 4.00000
.68089 7.69643 5.24046 1.48121 8.60758 5.00000
.92725 5.31404 4.92742 1.63829 8.63545 6.00000
LA1717 3.68566 5.22322 1.48923 9.40629 7.00000
.T4176 2.89699 5.04585 1.54815 9.65604 8.00000
.03016 2.58020 5.23824 1.57113 10.36299 9.00000
.17146 2.38683 5.18292 1.56674 10.43944 10.00000

D-6

Conservation Sums
100.

RPRRRRRRRRRRRRRRRRPRRRRRREBREREEREDNDN

.20853
.25440
.25398
.15678
.00002
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

00002

RPRRRRPRRPRRRRPRRPBPRRRPBRBEBRRREPBEROORNN

.34843
.31318
.05637
.86613
.99998
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

Appendix D

PR RRRRERRPRRRPRRRRRERPRRRPRRRRRERBERERRERRRRNDOIO

618.

.18657
.21484
.38104
.00192
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

58447

LCPFCT Test # 3 - Bursting Diaphragm:

I

OCONOOIPWN -

Density Temperature

[eleoloNoloNololoNololoNoNoNol i ol il ol

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.99998
.99998
.99990
.99971
.99968
.99760
.99689
.98951
.98341
.97335
.95750
.94812
.93204
.91363

OOV OWOVOWVWOWOWOWWOWWWOO

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.99998
.99998
.99985
.99985
.99934
.99804
.99785
.98400
.97919
.92987
.88910
.82158
.71456
.65114
.54183
.41560

Pressure

0NV WWWWWWWWWWWWWWWOL©

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.99995
.99996
.99962
.99962
.99835
.99612
.99464
.96009
.94812
.82568
. 72506
.55989
.30166
.15047
.89338
.60241

D-7

[elolololololololoolololoooloJolooJoloJoloRoXo NN il ol o

45.
Step = 200

.55193
.52026
.18232
.00195
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

00003

Velocity

[eleololololoJololoolololooolololooJo ol oo @)

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00003
.00003
.00022
.00034
.00065
.00369
.00406
.02219
.03272
.07242
.11805
.15631
.23294
.28739
.33418

.43942
.42741
.14694
.50288
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999

==
PrRrRPrRPRPrPPRPRPRPRPRPRPRPRPRPRPRPRPRPRPPRPRPPRPRPPRPRPRPRPRPRLOIOO

959.99567
NX =100
Energy

14.99993
14.99993
14.99993
14.99993
14.99993
14.99993
14.99992
14.99992
14.99985
14.99986
14.99936
14.99936
14.99746
14.99261
14.99189
14.94006
14.92234
14.73898
14.59009
14.34654
13.96412
13.75137
13.37850
12.95457

DT =

.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

0.050

Interfaces

.00000
.00000
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500

NS A\ORGH ONCROA R ol eoleo oo loolololoJo ol oo oo oo loloJo ol oo oo ol oo oo N e

.90596
.88679
.86797
.86217
.84276
.82269
.81802
.80185
.77902
L7T7111
.76143
. 73882
.72447
. 71897
.70355
.68684
.68161
.67739
.67053
.66758
.66684
.66625
.66625
.66627
.66628
.66724
.66742
.66742
.66737
.66720
.66707
.66707
.66708
.66752
.66868
.66890
.66897
.66897
.66833
.66651
.66625
.66370
.65725
.65723
.65542
.65385
.65385
.65474
.65613
. 78982
.03607
.54017
LTT7799
.03304
.17834
.28334
.34451
.38527
.41726
.43101
.43224

NNONNDNDNDNNNNDNWOPAPOONNTNTINNNNNTINNNANTNANNANNAANNANNTNANANNNANTNNNNNNN NN~ 000000000000 000000000

.36289
.23072
.09940
.05890
.92297
.78013
. 74870
.63083
.46884
.41151
.34473
.16852
.07598
.02844
.90964
. 78385
.75109
.71643
.65705
.64227
.63888
.63422
.63087
.63346
.63585
.64135
.64384
.64411
.64329
.64180
.64217
.64237
.64340
.65289
.65532
.65729
.65664
.65388
.63431
.63895
.58955
.61252
.70666
.76724
.82882
.84153
.83928
.82925
.8565634
.55305
.65581
.45870
.80279
.49940
.35766
.25747
.18807
.14067
.10460
.09506
.09415

Appendix D

GO OOdEPOTOToIoTOTNoIOTTOTONTOITOTTOTOTOTOTOITOTOITOTOOITOTITOTNOIOTTOTOTTIO OO0 OO NN~~~ N0

.48237
.18576
.89798
.81035
.51994
.22329
.15666
.92063
.59740
.48617
.35395
.03510
.85077
.77222
.56482
. 34622
.28326
.22707
.13427
.10184
.09395
.08632
.08408
.08594
.08764
.09858
.10165
.10183
.10090
.09862
.09789
.09802
.09879
.10846
.11893
.12197
.12203
.12018
.10222
.09142
.05655
.05244
.06517
.10488
.13116
.12715
.12568
.12613
.15414
.17573
.82377
. 32697
.98333
.08139
.135677
.15459
.12996
.10608
.08736
.09311
.09348

D-8

PRRRRRERRPRRRPRRRRRRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRERRBRRRRRRERRO0O00000000

.42965
47745
.52698
.63439
.67994
. 71973
.83227
.89444
.92035
.02204
.11207
.14566
.20772
.31747
.37106
.40380
.46901
.51275
.52826
.53396
. 54507
.55192
.55164
.54856
.54607
.54376
.54263
.54237
.54249
.54357
.54417
.54417
.54312
.54120
.53476
.53394
.53380
.53648
.53785
.55425
.55738
.56335
.55243
.55149
.53026
.52963
.52963
.53018
.53019
.51305
.65827
.46551
.54795
.52444
.55075
.55624
.54653
.54237
.54032
.538561
.53812

.80711
.37965
.96743
.88896
47467
.04796
.01824
.70164
.22599
.13195
.00170
.53747
.30446
.28225
.00846
.69604
.66030
.61565
.48440
.43814
.43684
.43176
.42812
.42773
42774
.44291
.44658
.44658
.44524
.44274
.44211
.44231
.44238
.45543
.46588
.46988
.46988
.46987
.44358
.44213
.39276
. 38968
.38971
.44830
.46410
.45562
.45341
.45568
.49933
.66764
.66014
.64434
.60513
. 98437
. 32288
.49328
.49866
.49624
.49859
.51675
.51730

.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500

86 2.43350
87 2.43284
88 1.13769
89 1.00005
90 1.00000
91 1.00000
92 1.00000
93 1.00000
94 1.00000
95 1.00000
96 1.00000
97 1.00000
98 1.00000
99 1.00000
100 1.00000

Conservation Sums
100.00005

PR RERRRRPRRERRERORN

.09330
.76175
.98511
.00002
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

Appendix D

el el ol Sl Sl el el el e el Sl S a6

597.

.09403
.28607
.12075
.00007
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

52051

LCPFCT Test # 3 - Bursting Diaphragm:

I Density Temperature
1 0.99906 9.99370
2 0.99906 9.99370
3 0.99905 9.99367
4 0.99900 9.99332
5 0.99878 9.99189
6 0.99824 9.98827
7 0.99679 9.97859
8 0.99297 9.95316
9 0.98515 9.90085
10 0.97309 9.82000
11 0.95842 9.72114
12 0.94323 9.61813
13 0.92872 9.51927
14 0.91508 9.42587
15 0.90196 9.33563
16 0.88900 9.24609
17 0.87605 9.15614
18 0.86311 9.06586
19 0.85026 8.97572
20 0.83754 8.88610
21 0.82497 8.79707
22 0.81254 8.70859
23 0.80024 8.62059
24 0.78806 8.53303
25 0.77602 8.44599
26 0.76411 8.35951
27 0.75235 8.27367
28 0.74076 8.18860
29 0.72936 8.10454
30 0.71822 8.02194
31 0.70743 7.94155
32 0.69715 7.86451
33 0.68762 7.79281
34 0.67931 7.72987
35 0.67292 7.68146
36 0.66923 7.65318
37 0.66810 7.64466
38 0.66805 7.64429

Pressure

QOO0 NNN~N~N00000000WWOWWWOWWWOWWWWOLO

.98426
.98426
.98419
.98330
.97973
.97068
.94652
.88321
.75378
.556575
.31697
.07207
.84071
.62538
.42033
.21978
.02122
.82484
.63169
.44247
.25734
.07610
.89854
. 72458
.55425
.38759
.22472
.06578
.91116
.76155
.61813
.48275
.35853
.25095
.16899
.12172
.10738
.10673

D-9

[olololololoJoololoNoRoXoN o

9.
Step =1600

.53723
.39070
.085631
.00006
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

34889

Velocity

RPRPRPRPPRPRPRPRPRPRPRPRPRPRPPRPPRPPRPOO0OO0000000000000000000000OO0

.00002
.00003
.00006
.00029
.00118
.00342
.00937
.02499
.06718
.10709
.16837
.23254
.29445
.356325
.41035
.46727
.52474
.568271
.64088
.69900
.75703
.81501
.87296
.93092
.98883
.04668
.10439
.16189
.21899
.27539
. 33057
.38369
.43338
.47715
.51101
.53073
.53670
.53703

.51626
.78168
.68525
.50009
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999
.49999

PFRrRPrRPRRPRPRPRPRPRPRPRPRPRPRRL0O

961.68964
NX =100
Energy

14.97631
14.97631
14.97621
14.97488
14.96952
14 .95596
14.91974
14.82505
14.63221
14.33913
13.98897
13.63353
13.30126
12.995611
12.70638
12.42667
12.15238
11.88373
11.62208
11.36827
11.12235
10.88396
10.65268
10.42830
10.21072
.99990
. 79584
.59863
.40859
.22641
.05338
.89147
. 74414
.61751
.52163
.46659
. 44987
.44917

00 00 00 00 00 00 00 €O €O O W WO ©

DT =

.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.00000
.00000

0.050

Interfaces

.00000
.00000
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500

PRERPPRPENNNDNDNNNNNDNNDNNNNNNNNRPOOOOO0OO0O00O00O000O00O000O00O000O00O000O0OO0O0O0O0O0OO0O0OO0OOOOO0O

.66805
.66805
.66805
.66805
.66804
.66794
.66783
.66782
.66782
.66798
.66813
.66814
.66811
.66793
.66791
.66791
.66811
.66856
.66861
.66861
.66845
.66775
.66697
.66678
.66678
.66680
.66703
.66769
.66857
.66913
.66932
.66935
.66935
.66924
.66890
.66838
.66738
.66728
.66728
.66843
.67474
.09444
.00489
.32824
.34057
.34058
.34057
. 34057
.34131
. 34447
. 34484
. 34498
.34752
. 34828
. 34827
.34412
.89018
.06977
.00002
.00000
.00000

s L 1 SIS TSI TSI SR T O S A OISR ER ER ERENENENEN ERENENENENERENENENENENENENENENERENENENENERENENENENENERENENENEREREN|

.64435
.64437
.64436
.64433
.64422
.64347
.64261
.64251
.64256
.64378
.64483
.64488
.64466
.64356
.64341
.64350
.64445
.64806
.64857
.64852
.64767
.64231
.63552
.63463
.63458
.63467
.63669
.64179
.64834
.65279
.65369
.65379
.65373
.65305
.64983
.64725
.64728
.64508
.62649
.60479
.53155
.61876
.58898
.19679
.18357
.18359
.18359
.18358
.18284
.17930
.17887
.17824
.17635
.17718
.17718
.17607
.92088
.11000
.00002
.00000
.00000

Appendix D

PRRPRPOOOIOOOOTOoIo oo oo oo oTooToooIoonoooioonotororol

.10683
.10685
.10684
.10683
.10664
.10638
.10395
.10379
.10383
.105688
.10772
.10783
.10749
.10540
.10511
.10519
.10737
.11315
.11391
.11387
.11209
.10317
.09266
.09065
.09062
.09077
.09391
.10233
.11342
.12070
.12280
.12304
.12300
.12169
.11700
.11129
.10365
.10144
.08904
.08329
.08187
.05496
.19062
.11465
.11081
.11085
.11084
.11084
.11070
.10929
.10910
.10793
.10903
.11263
.11261
.10096
.63081
.17635
.00004
.00000
.00000

D-10

COOORRREPRREPRERRERREEEBRE PR RREE R R S b S S S S S 1 S S S S S 2 S e s

.563701
.563701
.53704
.53706
.53715
.53771
.53833
.53840
.53834
.53762
.53685
.53677
.53685
.53781
.53799
.53799
.53701
.53465
.53437
.53441
.53507
.53904
.54296
.54424
.54438
.54435
.54308
.53938
.53482
.53144
.53080
.53082
.53088
.53149
.53349
.53616
.53833
.54187
.54161
.54862
.54372
.55191
.52310
.53662
.53809
.53811
.53810
.53812
.53860
.53847
.53834
.53878
.53940
.53984
.53983
.53640
.15993
.11801
.00003
.00000
.00000

00 00 00 00 00 0O 0O 0O 00 0O OO 0O OO0 0O 0O OO 0O OO0 0O 0O OO GO OO0 0O OO OO 0O OO0 0O 0O OO 0O OO0 CO 0O OO 0O OO0 CO 0O OO OO

.44931
.44934
.44936
.44936
.44915
.44773
.44609
.44590
.44590
.44842
.45056
.45066
.45021
.44784
.44758
.44768
.45019
.45696
.45789
.45787
.45568
.44555
.43289
.43097
.43107
.43128
.43496
. 44457
.45755
.46567
.46839
.46879
.46879
.46733
.46196
.45551
.44510
.44531
.42644
.42643
.42675
.90033
.11138
.42066
.43474
.43488
.43485
.43491
.43731
.43843
.43814
.43814
.44501
.45292
.45286
.41807
71776
.77189
.50006
.49999
.49999

.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.12500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.87500
.00000

Appendix D

100 1.00000 1.00000 1.00000 0.00000 1.49999 39.00000

Conservation Sums
99.96184 585.24878 116.32616 962.41534

D-11

Q

QOO0 0O0O0

C

Appendix E

Program FAST2D

BURSTING DIAPHRAGM "MUZZLE FLASH" - LCPFCT TEST # 4 August 1992

The problem begins with 1000:1 pressure and 100:1 density ratios
across a diaphragm inside a solid cylindrical barrel. The ideal wall
of the barrel is 10 cells thick (1.0 cm) with its inner radius given
as 1.5 cm and its outer radius of 2.5 cm. The run starts at time

t = 0.0 when the diaphragm at interface J = 11 (inside the barrel) is
ruptured. The flow then expands upward in a 1D manner, spilling out
of the barrel in a 2D flow which eventually reaches the boundaries at
R=4.0 cmand Z = 4.0 cm where a very simple extrapolative outflow
condition is expressed through the LCPFCT boundary conditions values.
The outflow condition used here includes a slow relaxation to ambient
conditions far from the origin.

Implicit NONE

Integer NPT, I, J, IJ
Parameter (NPT = 202)

Integer NR, NRP, MR, IALFR, BC_AXIS, BC_WALL, BC_OUTF
Integer NZ, NZP, MZ, IALFZ, LOUT, MAXSTP, IPRINT
Integer ICIN, ICOUT, JCTOP, JSTEP, ISTEP

Real DR, DZ, DT, TIME

Real COURANT, DTNEW, VTYPICAL, RELAX

Real DTMAX, VZMAX, R(NPT), Z(NPT)

Real RHO(40,40), RVR(40,40), RVZ(40,40), ERG(40,40)
Real RHO_IN, PRE_IN, VEL_IN, GAMMAO

Real RHOAMB, PREAMB, VELAMB, GAMMAM

Real RHON(NPT), RVRN(NPT), RVIN(NPT), ERGN(NPT)

Common / ARRAYS / RHON, RVRN, RVTN, ERGN, RELAX,

& RHO_IN, PRE_IN, VEL_IN, GAMMAO,
& RHOAMB, PREAMB, VELAMB, GAMMAM
1000 Format (°1°, /, °’ LCPFCT Test # 4 - FAST2D Barrel Explosion:’,
1 > Step =’, 14, /, 5X, I3, ’ x’, I3 ’ Uniform Grid.’,
2 > Time=’, 1PE12.4, ’ and DT =’, E12.4)
1005 Format (’ After step ’, I5, ’° TIME = ’, 1PE12.4,
& > and timestep DT = ’, E12.4)
1010 Format (1X, /, ’ Fluid variables on selected lines ’,
1 /, > I, 73, RHO axis VZ PRE ’,
2 ’ RHO top VR PRE ’,
3 ’ RHO wall VZ PRE ’, /)

1011 Format (I3, 1X, 3(1X, F8.2, F8.2, F8.2))

The 2D barrel explosion program control parameters are specified.
(Change here to run other cases)

NR = 40 ! Number of cells in the first (radial R) direction
TIALFR = 2 | Sets cylindrical coordinates in the R direction
DR = 0.1 ! Cell size (e.g., cm) in the radial direction

NZ = 40 ! Number of cells in the second (axial Z) direction
IALFZ = 1 ! Sets Cartesian coordinates in the Z direction

DZ = 0.1 ! Cell size (e.g., cm) in the axial direction

E-1

LOUT = 11
BC_AXIS = 1
BC_OUTF = 2
BC_WALL = 1
MAXSTP = 401
IPRINT = 25
COURANT = 0.4
DTMAX = 2.0E-7
DT = 1.0E-9

Appendix E

I Logical unit number of printed output device

I Cylindrical axis set as an impermeable wall

I Outer boundaries set as extrapolative outflow

I Walls of the barrel set as an ideal solid wall

I Maximum number of timesteps of length DT

I Initial frequency of validation printout results
! Approximate maximum Cournat number allowed

I Maximum timestep allowed in the computation

! Initial (small guess) for starting timestep

¢ Initialize the test problem geometry, a cylindrical shell JCTOP cells
c high in Z (indexed by J) which extends from the left of cell ICIN to
¢ the right of cell

ICOUT in X (indexed by I).

C ___
ICIN = 16 ! Number of the innermost radial cell in the barrel
ICOUT = 25 ! Number of the outermost radial cell in the barrel
JCTOP = 20 ! Number of the uppermost axial cell in the barrel
GAMMAO = 1.4 | Gas constant
RHOAMB = 0.00129 ! Initialization and relaxation BCN = 2
PREAMB = 1.013E+6 ! Initialization and relaxation BCN = 2
VELAMB = 0.0 ! Initialization and relaxation BCN = 2
RHO_IN = 100.0*%RHOAMB ! Initialization and relaxation BCl1l = 2
PRE_IN = 1000.0*PREAMB ! Initialization and relaxation BC1l = 2
VEL_IN = 0.0 ! Initialization and relaxation BC1 = 2
RELAX = 0.002 ! Relaxation rate, used when BC1 or BCN = 2
GAMMAM = GAMMAO - 1.0

¢ Determine the cell interface locations, here a uniform grid .

C ___
NRP = NR + 1
NZP = NZ + 1
Do 100 I = 1, NRP

100 R(I) = DR*FLOAT(I-1)

1,

NZP

110 Z(J) = DZ*FLOAT(J-1)

¢ Fill the arrays with air at STP and behind the diaphragm increase the
¢ density by 100 to 1 and the pressure by 1000 to 1 .o

Do 200 J

Do 200 I
RHO(I,J)
RVR(I,J)
RVZ(I,J)

200 ERG(I,J)
Do 210 J =

Do 210 I =
ERG(I,J)

210 RHO(I,J)

has no effect

Qo 00

ERG(I,J)
220 RHO(I,J)

I I T |

1
1

e -

as

1,
ICI

0.0
PREAMB/GAMMAM
JCTOP/2

ICIN - 1
PRE_IN/GAMMAM
RHO_IN

Mark the unused cells inside the cylindrical ’barrel’ so they will
show up distinctly compared to ambient values in the plots. This

the simulation does not access these values

JCTOP

N, ICOUT
20.0*ERG(I,J)
20.0%RHO(I, J)

¢ Begin loop over the timesteps .

QO OO0

Appendix E

TIME = 0.0
Do 9999 ISTEP = 1, MAXSTP

Compute the next timestep based on a ’Courant’ number COURANT .
VZMAX = 0.0
Do 240 J =1, NZ
Do 240 I =1, NR
VTYPICAL = ERG(I,J)/RHO(I,J)
240 VZMAX = AMAX1 (VTYPICAL, VZMAX)
VZMAX = SQRT (VZMAX)
DTNEW = COURANT*AMIN1(DR,DZ)/VZMAX
DT = AMIN1 (DTMAX, 1.25%DT, DTNEW)

The results are printed when required .
JSTEP = ISTEP - 1
If (MOD(JSTEP,5) .eq. O) Write (6, 1005) JSTEP, TIME, DT
If (MOD(JSTEP,IPRINT) .eq. O) Then
Write (LOUT, 1000) ISTEP, NR, NZ, TIME, DT
If (ISTEP .ge. 4*IPRINT) IPRINT = 2%IPRINT
Write (LOUT, 1010)
Do 230 IJ =1, 40

DIN(1) = RHO(1,IJ)/RHOAMB
DIN(2) = 0.01*RVZ(1,IJ)/RHO(1,IJ)
DIN(3) = (GAMMAM/PREAMB)=*(ERG(1,IJ) - 0.5%

& (RVR(1,IJ)**2 + RVZ(1,IJ)**2)/RHO(1,1J))

DIN(4) = RHO(IJ,40)/RHOAMB
DIN(5) = 0.01%RVR(IJ,40)/RHO(IJ,40)
DIN(6) = (GAMMAM/PREAMB)=*(ERG(IJ,40) - 0.5%

& (RVR(IJ,40)**2 + RVZ(IJ,40)**2)/RH0O(IJ,40))

DIN(7) = RHO(40,IJ)/RHOAMB
DIN(8) = 0.01%RVZ(40,IJ)/RH0(40,IJ)
DIN(9) = (GAMMAM/PREAMB)=*(ERG(40,IJ) - 0.5%
& (RVR(40,IJ)**2 + RVZ(40,IJ)**2)/RH0O(40,1J))
230 Write (LOUT, 1011) IJ, (DINC(I), I =1, 9)

Write (LOUT, 1011)

Integrate the fluid equations in the radial direction (indexed by I).
The outer boundary condition at interface I = NR+1 is an extra-
polation from the interior cell values with a slow relaxation to
the known distant ambient conditions .

Call RESIDIFF (0.999)

Call MAKEGRID (R, R, 1, NRP, IALFR)

Do 300 J =1, NZ

Pick up the data from the 2D arrays in the radial direction, setting
the temporary, compact 1D arrays for GASDYN .

Do 400 I =1, NR

RHON(I) = RHO(I,J)
RVRN(I) = RVR(I,J)
RVIN(I) = RVZ(I,J)
400 ERGN(I) = ERG(I,J)

Integrate along the radials inside and outside the cylinder

If (J .le. JCTOP) Then
Call GASDYN (1, ICIN-1, BC_AXIS, BC_WALL, DT)
Call GASDYN (ICOUT+1, NR, BC_WALL, BC_QOUTF, DT)

E-3

(@]

Qo

QOO0 00

(@]

Appendix E

Integrate along the radials (indexing in I) above the cylinder
which reach from the axis to the outer boundary .
Else
Call GASDYN (1, NR, BC_AXIS, BC_OUTF, DT)
End If

Put the data back into the 2D arrays in the radial directiomn .

Do 500 I = 1, NR

RHO(I,J) = RHON(I)
RVR(I,J) = RVRN(I)
RVZ(I,J) = RVIN(I)
500 ERG(I,J) = ERGN(I)
300 Continue ! End loop integrating the NZ rows.

Integrate along the axials (indexing in J) which reach from the
lower active J cell (1 or JCTOP+1) to the upper boundary. The
upper boundary condition at interface J = NZ+1 (BCN = 2) is an
extrapolation from the interior cell values with a slow relaxation
to the known distant ambient conditions

Call MAKEGRID (Z, Z, 1, NZP, IALFZ)
Do 600 I =1, NR

Pick up the data from the 2D arrays in the axial direction, setting
the temporary, compact 1D arrays for GASDYN .

Do 700 J = 1, NZ

RHON(J) = RHO(I,J)
RVTN(J) = RVR(I,J)
RVRN(J) = RVZ(I,J)
700 ERGN(J) = ERG(I,J)

Integrate along the axials either from the lower solid boundary at
interface J = 1 or from the top of the barrel at J = 21 for cells
with I = ICIN to ICOUT .
If (I.ge.ICIN .and. I.1le.ICOUT) Then
Call GASDYN (JCTOP+1, NZ, BC_WALL, BC_OUTF, DT)
Else
Call GASDYN (1, NZ, BC_WALL, BC_OUTF, DT)
End If

Put the data back into the 2D arrays in the axial direction .

Do 800 J = 1, NZ
RHO(I,J) = RHON(J)
RVR(I,J) = RVTN(J)
RVZ(I,J) = RVRN(J)
800 ERG(I,J) = ERGN(J)
600 Continue ! End loop integrating the NR columns.

L I [TR

TIME = TIME + DT
9999 Continue ! End of the timestep loop.

Stop
End

E-4

Appendix E

LCPFCT Test # 4 - FAST2D Barrel Explosion:
40 x 40 Uniform Grid.

Time=

Fluid variables on selected lines
RHO top

I,

© 0 N O O b W N =

W W W W W W NDNDNDDNDMNDMDNDDNMNDNDMNDERPR PR P PR B 2 B 2
A > WNDEFE O O 00 NO O P WNE O WO NO” O d» WND B~ O

J RHO axis VZ

100.
100.
100.
100.
100.
100.
100.
100.
100.
100.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

L e e e S o e e

00
00
00
00
00
00
00
00
00
00

O OO OO OO o o o oo

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

PRE

1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.
1000.

el e e T e e T S e e e e e S e i S T e

00
00
00
00
00
00
00
00
00
00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

e e e e e = T = T e = = S e e e e e S N e e e e T S e S S Y

0.0000E+00 and

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

E-5

<
=)

O OO OO O oo o o oo

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

Step =

PRE

R T e e e e e T T e e e S e e N e T e T T e T T T Y e e e e e e e

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

DT

1

= 1.2500E-09
RHO wall VZ
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00
1.00 0.00

PRE

e T e e e e = T e = S S e e e S S S e N T e e e S S N T

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

36 1
37 1
38 1
39 1
40 1

LCPFCT

.00
.00
.00
.00
.00

0.
0.
0.
0.
0.

00
00
00
00
00

1.
1.
1.
1.
1.

00
00
00
00
00

Appendix E

e

Test # 4 - FAST2D Barrel

40 x 40 Uniform Grid.

Time=

Fluid variables on selected lines
RHO axis VZ

I, J

© 0 N O O W N =

W N DN NDNDNDMDNDDNDMNDNDMNDNDERPR PR B B B B B B
O © 00 N O O b WNNEFP, O W O0WNOO U WN R+~ O

25.
2b.
25.
25.
25.
25.
25.
25.
25.
25.
24.
24.
24.
24.
23.
23.
22.
22.
22.
22.
22.
.82
.54
21.
20.
20.
19.
19.
18.
18.

21
21

19
28
37
38
36
22
13
10
16
17
95
80
57
09
67
32
94
60
30
14
05

13
63
21
73
18
66
08

30.
.50

71

119.
165.
213.
264.
.24
362.
420.
467 .
512.
566.
620.
672.
723.
773.
820.
869.
918.
968.
1019.
1068.
1117.
1165.
1213.
1262.
1307.
1355.
1398.
1443.

311

06

77
83
07
63

53
76
50
41
81
80
04
80
53
67
17
10
59
32
43
82
29
81
16
89
07
05
14

PRE

146.
147.
147.
147.
146.
146.
144.
144,
144,
143.
140.
138.
138.
136.
134.
132.
129.
127.
125.
123.
121.
118.
116.
114.

111

101

86
34
30
59
95
30
66
01
98
35
63
89
12
21
31
10
48
29
13
10
19
99
80
09

.28
108.
105.
.86
98.
95.

56
37

70
42

2.5060E-05 and

.00 0.00
.00 0.00
.00 0.00
.00 0.00
.00 0.00
Explosion:

RHO top VR

12.
.99
.97
.63
.41
.56
.95
.36
.38
.94
.95
.55
.80
.28
.79
.13
.57
.89
.40
.14
17
.39
.18
.86
.75
.75
.16
.72
.78
.93

11
11
11
11

[
o

P PP, PO OO F,F P P NNMNDWHDDOhOO OO N 0O O

01

1171

1285.
1279.
1279.
990.
772.
748.
717.

E-6

.01
.05
.40
10.
43.
63.
114.
164.
196.
258.
307.
359.
410.
459.
513.
597.
691.
T4T.
818.
918.
992.
1033.
.59

37
71
09
77
56
37
82
26
17
66
34
13
67
17
93
20
84
51
27

47
33
10
03
98
22
76

1.00 1.00 0.00
1.00 1.00 0.00
1.00 1.00 0.00
1.00 1.00 0.00
1.00 1.00 0.00

Step = 151

DT = 2.0000E-07

PRE RHO wall VZ
53.98 1.00 0.00
53.87 1.00 0.00
53.76 1.00 0.00
51.75 1.00 0.00
50.52 1.00 0.00
45.72 1.00 0.00
41.94 1.00 0.00
38.70 1.00 0.00
32.85 1.00 0.00
30.28 1.00 0.00
25.98 1.00 0.00
22.79 1.00 0.00
19.67 1.00 0.00
17.19 1.00 0.00
15.18 1.00 0.00
12.89 1.00 0.00
9.44 1.00 0.00
6.87 1.00 0.00
6.47 1.00 0.00
5.24 1.00 0.00
3.48 1.00 0.00
3.07 1.00 0.00
2.68 1.00 0.00
1.71 1.00 0.00
1.46 1.00 0.00
1.27 1.00 0.00
3.36 1.00 0.00
5.96 1.00 0.00
5.97 1.00 0.00
8.02 1.00 0.00

e

.00
.00
.00
.00
.00

PRE

e e e e e T T T I S S e e N S N S N T e e T T = = S =N

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

Appendix E

31 17.48 1489.85 89.78 2.41 767.94 8.42 1.00 0.00 1.00
32 16.95 1632.89 86.12 2.73 722.70 9.10 1.00 0.00 1.00
33 16.54 1573.44 83.37 2.77 711.28 9.21 1.00 0.00 1.00
34 16.15 1614.41 80.25 2.77 594.68 4.72 1.00 0.00 1.00
35 15.71 16569.32 73.69 1.11 0.55 1.00 1.00 0.00 1.00
36 14.75 1689.00 65.28 1.00 0.00 1.00 1.00 0.00 1.00
37 13.73 1699.93 63.11 1.00 0.00 1.00 1.00 0.00 1.00
38 13.44 1724.09 61.23 1.00 0.00 1.00 1.00 0.00 1.00
39 12.58 1785.64 56.42 1.00 0.00 1.00 1.00 0.00 1.00
40 12.01 1800.57 53.98 1.00 0.00 1.00 1.00 0.00 1.00
LCPFCT Test # 4 - FAST2D Barrel Explosion: Step = 401
40 x 40 Uniform Grid. Time= 7.5061E-05 and DT = 2.0000E-07
Fluid variables on selected lines
I, J RHO axis VZ PRE RHO top VR PRE RHO wall VZ PRE
1 6.72 10.05 23.15 2.15 2.07 4.60 1.03 1.65 1.05
2 6.72 22.34 23.15 2.14 40.89 4.56 1.06 -18.54 1.06
3 6.72 40.14 23.11 2.12 61.83 4.51 1.24 -67.51 1.36
4 6.71 55.56 23.03 2.09 97.61 4.42 1.39 -101.13 1.59
5 6.68 74.31 22.91 2.05 114.92 4.35 1.42 -116.58 1.64
6 6.65 89.89 22.71 2.03 153.71 4.20 1.42 -116.48 1.64
7 6.62 109.83 22.61 1.96 171.32 4.14 1.42 -119.79 1.65
8 6.59 126.22 22.38 1.93 212.53 3.91 1.43 -125.49 1.67
9 6.54 145.82 22.19 1.86 234.78 3.82 1.43 -129.39 1.67
10 6.49 163.81 21.95 1.79 276.14 3.58 1.43 -132.93 1.67
11 6.47 182.94 21.74 1.76 301.24 3.47 1.42 -135.16 1.66
12 6.38 201.53 21.45 1.67 339.29 3.21 1.40 -136.63 1.64
13 6.35 222.71 21.16 1.60 372.58 3.09 1.38 -137.84 1.63
14 6.27 243.62 20.82 1.51 409.39 2.85 1.33 -129.86 1.55
15 6.18 265.35 20.44 1.47 445.40 2.70 1.26 -115.50 1.44
16 6.08 287.07 19.99 1.39 475.57 2.50 1.22 -104.31 1.38
17 6.00 311.29 19.52 1.26 521.74 2.20 1.17 -99.07 1.34
18 5.86 335.88 18.95 1.17 564.21 1.99 1.13 -80.96 1.27
19 5.73 359.63 18.34 1.08 605.87 1.82 1.08 -68.17 1.19
20 5.59 385.76 17.67 1.01 640.98 1.67 1.06 -52.48 1.15
21 5.45 410.44 16.96 0.95 681.85 1.50 1.01 -42.61 1.07
22 5.27 438.62 16.22 0.87 718.96 1.32 0.98 -30.70 1.04
23 5.06 466.03 15.43 0.80 757.25 1.17 0.96 -26.03 1.02
24 4.88 496.84 14.61 0.72 788.50 1.03 0.92 -25.38 0.97
25 4.67 525.27 13.70 0.66 827.84 0.91 0.91 -16.09 0.97

E-7

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

NN DNDNDDNDDNDDNDWWWWWHS & &

.50
.39
.18
.94
.74
.51
.31
.13
.95
.79
.67
.53
.43
.20
.15

552.
568.
596.
630.
.86
.25
718.
744 .
767 .
787.
808.
.78
844 .
886.
889.

661
691

831

10
08
19
70

83
96
44
09
08

10
99
43

e i
O O NN

S b O 01 O OO N N 00 ©O

.99
.58
.80
.85
.05
.21
.47
.83
.25
.68
.27
.79
.46
.74
.60

Appendix E

O O O O OO O O O O O o o o o

.60
.54
.49
.44
.40
.35
.31
.30
.27
.21
.17
.17
.18
.34
.36

862.
.06

932.

966.
1004.
1024.
1072.
1086.
1082.
1116.
.24
1239.
1437.

922.

880.

901

1211

E-8

24

66
35
08
00
45
04
46
14

07
65
97
79

O O O O O O O O O O o o o oo

.79
.70
.60
.54
.46
.41
.33
.34
.30
.20
17
.15
.02
.48
.54

O O O O O O O O O O o o o o o

.83
.80
.71
.65
.46
.34
.33
.30
.30
.32
.35
.37
.37
.36
.36

-14.
.39
14.
49.
76.
.56
177.
193.
377.
.96

131

521

599.
669.
703.
722.
736.

48

25
67
73

88
65
07

63
38
18
78
23

O O O O O O O O O O o o o o o

.91
.89
.81
.76
.73
.71
.69
.69
.66
.71
.72
.66
.60
.56
.54

