NRL Scientists Demonstrate a High-Efficiency Ceramic Laser

5/24/2011 - 37-11r
Contact: Dom Panciarelli, (202) 767-2541

Scientists in the Optical Sciences Division at the Naval Research Laboratory, report a successful demonstration of a novel high-efficiency ceramic laser that is both, light-weight and compact for use in both military and civilian applications.

A sample of a transparent laser (left) and a vial containing nano-powder used to make it.

According to Dr. Jas Sanghera, a senior scientist on the program, "Solid-state crystal lasers are ideal for applications where light-weight and compact laser applications are important. But, these are difficult to grow due to high-temperature growth issues, which limit size and quality. However, researchers in our Optical Materials and Devices branch, have overcome these challenges by developing a low-temperature ceramization process to fabricate these hard-to-grow materials resulting in high optical quality."

This new process enables the densification or sintering of high-purity nano-powder at ~65 percent of the melting temperature. This avoids the traditional high-temperature problems associated with crucible reactions, volatilization and phase transitions, enabling the fabrication of a fully-dense and transparent ceramics material with optical-quality similar to single-crystals. This process has been applied to YAG, a hard synthetic yttrium aluminum garnet, used in laser technology, which is the workhorse of the solid-state laser community.

Scaling to significantly higher powers with good beam quality in YAG has its limitations, mainly due to its limited thermal conductivity and its sudden drop with increasing rare earth ion dopant concentration. A better solution is to use materials with higher thermal conductivity such as the sesquioxides Y2O3, Sc2O3, and Lu2O3. Of the three, the most important is Lu2O3, since its thermal conductivity is almost insensitive to the rare earth ion-dopant concentration due to the similarity of their phonon energies. For certain laser configurations requiring high-dopant concentration, such as thin-disk geometries, Lu2O3, has shown excellent promise for high-power scaling. Although, single-crystal Lu2O3 is difficult to make by traditional high-temperature crystal growing at >2400°C, the NRL research team has successfully fabricated laser quality rare earth doped Lu2O3 ceramics using the low-temperature sintering route.

The test-bed used for demonstration of lasing with powder ceramic sample.

The resultant ceramics were obtained by the synthesis of ultra-high purity Yb3+ doped Lu2O3 nano-powders, which were then hot-pressed to make a highly transparent Yb3+:Lu2O3 ceramic. The ceramics demonstrated lasing at 1080 nm with a world record high efficiency of 74 percent. "This result is remarkable considering the high doping level of 10 percent Yb3+. It paves the way forward for thin disk lasers, such as those based on Yb3+ at 1μm, that would have small path-lengths (100's μm), high-dopant concentrations (~10%), and the potential for TW high peak power short pulse lasers and multi-KW high average power lasers, both being pertinent to very high power laser applications on-board military platforms as well as commercial cutting and welding," concludes Sanghera.

This work was funded by the DOD Joint Technology Office for High-Energy Lasers and NRL/ONR.

Get NRL News: RSS

About the U.S. Naval Research Laboratory

The U.S. Naval Research Laboratory provides the advanced scientific capabilities required to bolster our country's position of global naval leadership. The Laboratory, with a total complement of approximately 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 90 years and continues to advance research further than you can imagine. For more information, visit the NRL website or join the conversation on Twitter, Facebook, and YouTube.

Comment policy: We hope to receive submissions from all viewpoints, but we ask that all participants agree to the Department of Defense Social Media User Agreement. All comments are reviewed before being posted.