Dr. Alexander Velikovich Honored by the Nuclear and Plasma Sciences Society

06/01/2015 12:00 EDT - 38-15r
Contact: Daniel Parry, (202) 767-2541

U.S. Naval Research Laboratory (NRL) plasma physicist, Dr. Alexander L. Velikovich, receives the 2015 IEEE Plasma Science and Applications Award for advancing the theory of plasma shocks and hydrodynamics and magneto-hydrodynamics — enabling many-fold increases in both Z-pinch and laser-plasma experimental performance in radiation and fusion applications.

Dr. Alexander VelikovichU.S. Naval Research Laboratory plasma physicist, Dr. Alexander L. Velikovich, is recipient of the 2015 IEEE Plasma Science and Applications Award for advanced plasma theory. The Plasma Science and Applications Committee (PSAC) of the Nuclear and Plasma Sciences Society (NPSS) presented Dr. Velikovich the award, May 2015.
(Photo: U.S. Naval Research Laboratory/Jamie Hartman)

Presented by the Nuclear and Plasma Sciences Society (NPSS), the award recognizes outstanding contributions to the field of plasma science and engineering to include plasma dynamics, thermonuclear fusion, plasma sources, relativistic electron beams, laser plasma interactions, diagnostics and solid-state plasmas.

Author and co-author of more than 170 publications, with over 2,500 citations, Velikovich developed the first analytical theory to calculate the time-dependent growth of compressible Richtmyer-Meshkov (RM) instability in the linear regime, as well as, non-linear RM theory explaining reduction of its growth rate for large initial amplitude.

Most recently Velikovich developed a theory explaining the effect of shock-generated turbulence — discovered in numerical simulations at NRL over a decade ago — on the Rankine-Hugoniot jump conditions. Derived from the laws of mass, momentum and energy, many physical effects, first observed on the Nike krypton fluoride (KrF) laser at NRL, were recreated on both the Nova laser at the Lawrence Livermore National Laboratory, California, and the Omega laser at the Laboratory for Laser Energetics (LLE) located in New York.

Velikovich's research on High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF), particularly laser-fusion and Z-pinch-related plasma hydrodynamics, formed the theoretical basis for x-ray generation in Z-pinch plasma radiation. Modeling and interpretation of these results were instrumental in establishing the physical picture of the Rayleigh-Taylor (RT) instability seeding in laser fusion targets caused by the roughness of the front and rear surface of a laser target. Research that later translated into the development of a theory that provided the physical basis for most hydrodynamic experiments performed on the Nike laser over the past decade.

Earning a Master of Science equivalent degree in physics from Moscow State University Department of Physics, Moscow, Russia, in 1974, Velikovich completed a Ph.D. equivalent degree in plasma physics and chemistry awarded by Kapitza Institute for Physical Problems, U.S.S.R. Academy of Sciences in 1978. In 1991 he earned an Advanced Degree of Doctor of Science (equivalent of Habilitation in European Union countries) in Electrophysics awarded by High Current Electronics Institute, Russian Academy of Sciences, Tomsk, Russia. Velikovich started at NRL in 1993 as a contractor, transitioning to federal civil service at NRL in 1999.

In 2005 Velikovich was elected Fellow of the American Physical Society upon the recommendation of its Division of Plasma Physics for "outstanding contributions to the theories of dynamics and stability of Z-pinch plasmas, Richtmyer-Meshkov instability and related effects of early-time perturbation seeding and evolution in laser plasma targets." In 2010, along with colleagues from Sandia and NRL, Velikovich shared the 2010 Department of Energy (DoE) Defense Programs Award of Excellence for "increased cold x-ray source yields, improved source characterization and debris mitigation techniques to qualify stockpile components on refurbished Z machine." In 2000, 2007, 2010, and 2012, he was the recipient of the NRL Alan Berman Research Publication Award. In 2015 he received the NRL Sigma Xi award for Pure Science.

Get NRL News: RSS

About the U.S. Naval Research Laboratory

The U.S. Naval Research Laboratory provides the advanced scientific capabilities required to bolster our country's position of global naval leadership. The Laboratory, with a total complement of approximately 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 90 years and continues to advance research further than you can imagine. For more information, visit the NRL website or join the conversation on Twitter, Facebook, and YouTube.

Comment policy: We hope to receive submissions from all viewpoints, but we ask that all participants agree to the Department of Defense Social Media User Agreement. All comments are reviewed before being posted.