TitleThe Path from VLITE to ngLOBO: A Roadmap for Evolving a Low Frequency Commensal System from the JVLA to the ngVLA
Publication TypeConference Paper
Year of Publication2018
AuthorsKassim, N, Clarke, T, Giacintucci, S, Helmboldt, J, Ray, P, Peters, W, Polisensky, E, Hicks, B, Deneva, J, Kerr, M
Conference NameAAS Meeting #231
PublisherAmerican Astronomical Society
Abstract

The VLA Low-band Ionosphere and Transient Experiment (VLITE, ) is a commensal observing system on the NRAO Karl G. Jansky Very Large Array (VLA). The separate optical path of the prime-focus sub-GHz dipole feeds and the Cassegrain-focus GHz feeds provided an opportunity to expand the simultaneous frequency operation of the VLA through joint observations across both systems. 16 VLA antennas are outfitted with dedicated samplers and use spare fibers to transport the 320-384 MHz band to the VLITE CPU-based correlator. Initial goals included exploring the scientific potential of a commensal low frequency system for ionospheric remote sensing, astrophysics and transients. VLITE operates at nearly 70% wall time with roughly 6200 hours of VLA time recorded each year.Several papers at this meeting review VLITE science and early results. Here we consider how the project could evolve in the future. Over the next 10 years, a straightforward evolutionary path calls for an expansion of VLITE to all 27 VLA antennas and to the maximum available low band receiver bandwidth (224-480 MHz). The GPU-based correlator for this LOw Band Observatory (LOBO) would also incorporate lower frequency signals from the new VLA 74 MHz system, including from VLA dishes (60-80 MHz) and standalone Long Wavelength Array (LWA) aperture array stations (20-80 MHz).In the longer term, we look towards leveraging the vast infrastructure of the ngVLA to include a commensal low frequency capability, called ngLOBO. As described in our community white paper (Taylor et al. 2018; arXiv:1708.00090), ngLOBO has three primary scientific missions: (1) Radio Large Synoptic Survey Telescope (Radio-LSST): one naturally wide beam, commensal with ngVLA, will conduct a continuous synoptic survey of large swaths of the sky for both slow and fast transients; (2) This same commensal beam will provide complementary low frequency images of all ngVLA targets when such data enhances their value. (3) Independent beams from the ngLOBO-Low aperture array will conduct research in astrophysics, Earth science and space weather applications, engaging new communities and attracting independent resources. We describe our developing ngLOBO technical concept.

URLhttps://ui.adsabs.harvard.edu/?#abs/2018AAS...23121501K