An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | June 25, 2020

NRL telescope onboard ESA, NASA SOHO discovers 4000th comet

By Cassandra Eichner

The U.S. Naval Research Laboratory’s Large Angle Spectrometric Coronagraph (LASCO) instrument identified the 4000th comet discovered by the Solar and Heliospheric Observatory (SOHO), a joint mission between the European Space Agency and NASA on June 15.

LASCO, which is aboard SOHO, was developed in 1995 to see the extremely faint emission from the region around the Sun called the corona. Operating in space for nearly 25 years, the telescope has seen much more space action than researchers originally anticipated — discovering well over half of all known comets.

“In less than 25 years SOHO has added this huge volume to the archives of our comet knowledge, and it comes from a telescope not designed to see comets,” said Karl Battams, NRL computational scientist. “This is exciting for many reasons, but perhaps mostly because LASCO is discovering comets that are otherwise completely unobservable from Earth due to their proximity to the Sun.”
The majority of the comet discoveries were made by amateur astronomers who participated in the NASA-funded and NRL-managed Sungrazer project, which encourages citizen scientists to peruse imagery from SOHO and the Sun-Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument suite on the NASA Solar Terrestrial Relations Observatory (STEREO) and search for previously unknown comets. New comet findings are reported through the website, and subsequently verified and measured by Battams, who has led this Project since 2003.

“The people who discovered these comets were not necessarily professional astronomers, they were people at home,” Battams said. “People of all ages, backgrounds, and countries have volunteered their time to be a part of this citizen science project. The 4000th comet is a testament to the invaluable input from so many volunteers all around the world over the past two decades.”

The Navy has a unique interest in the Sun and near -Sun environment. Much of the Navy’s equipment, and equipment we use every day, such as GPS, is impacted by the Sun. Studying comets traveling near the Sun helps researchers gain a greater understanding of Earth’s closest star, as they observe the comets reacting to its extreme environment.

Battams is a computational scientist and astrophysicist within the Solar and Heliospheric Physics Branch under the Space Sciences division at NRL. The mission of this Branch is to develop improved heliospace environment understanding, awareness, sensors, forecast capabilities, and monitoring tools that predict operational impacts and enable real-time threat warning; and transition these developments to support the Navy/Marine Corps and other agencies.