An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | Oct. 6, 2020

Two NRL Research Physicists Named 2020 Citation Laureates “of Nobel Class”

By Nicholas E. M. Pasquini, U.S. Naval Research Laboratory Corporate Communications

Two research physicists from the U.S. Naval Research Laboratory were named Citation Laureates “Researchers of Nobel Class” by Clarivate on Sept. 23 – Thomas L. Carroll and Louis M. Pecora – for research in nonlinear dynamics including synchronization of chaotic systems.

They were selected out of 24 world-class researchers from six countries identified as Citation Laureates.

Science’s highest honor, the Nobel Prize in Physics, will be awarded by The Royal Swedish Academy of Sciences in Stockholm, Sweden, Tuesday, Oct. 6 at 11:45 (CEST) via livestream at www.nobelprize.org. To date, 54 Citation Laureates listed in the Hall of Citation Laureates have gone on to receive a Nobel Prize.

Carroll and Pecora’s paper is cited over 7,000 times out of more than 50 million articles and proceedings indexed in the Web of Science since 1970, only 5,700 or .01 percent have been cited 2,000 or more times.

Authors from this group are identified and selected as Citation Laureates. They are individuals whose research reports are highly cited and whose contributions to science have been extremely influential, even transformative.

“It is an honor to have so many other scientists using our work,” Carroll said. “As scientists, we all want to do something that makes a difference, and this award shows we have succeeded.”
Carroll and Pecora’s basic research in nonlinear dynamics is the study of how to model, analyze, and measure systems evolving in time, sometimes in complicated ways, including the motion now called "chaos."

Synchronization of chaotic systems started as a basic scientific idea, but the concept of chaotic systems has been widely applied to biology, communications, machine learning, and radar.

“Chaotic signals look like noise to an uninformed observer, but with the right knowledge they can carry information, which can be decoded by chaotic synchronization,” Carroll said. “Recent work has even used chaotic signals to combine communications with radar on the same signal, leading to less spectrum congestion.”

Many machine-learning techniques such as reservoir computing depend on the principles of chaotic synchronization.

“Neither Tom or I thought this would happen, in a lot of scientific breakthroughs serendipity plays a role,” Pecora said. “We came along when there was just enough known about nonlinear dynamics to take to the next step and produce something interesting and, hopefully, useful.”

Carroll and Pecora in 1990 developed a method to synchronize chaotic systems, which they confirmed with simulations and experiments. This greatly stimulated research into the uses of chaos for communication and resulted in a Physical Review Letter entitled "Synchronization in Chaotic Systems,” which is now the 11th most cited paper in Physical Review Letters.

“The research described in the paper was a breakthrough on how to construct a new dynamical system in which two chaotic systems came into complete synchrony,” Pecora said. “This caused an avalanche of research, leading to another ground-breaking paper by Carroll and Pecora on synchronizing dynamical systems in arbitrarily structured networks.”

What might the U.S. Navy want with chaotic motion?

“This caused us to consider what might be done with chaotic motion in some type of system,” Pecora said. “What we thought about was that it might be possible to generate chaotic or rather complicated signals and use them to send messages.”

More recently, their ideas have shown up in other areas of research. Several concepts developed in their work now underlie the description and design of reservoir computers and an active area of artificial intelligence. This is in addition to guiding research in dynamics of power grids, computer networks, and modeling how neurons might interact in some brain functions.

Chaotic motion has a rigorous mathematical description. It's a pattern of motion extremely complicated due to instabilities inherent in the system doing the motion. No outside noise or interference causes the complicated motions. These instabilities make the motion hard to predict far into the future.

“This is not just some mathematical quirk of an unusual model,” Pecora said. “The weather is chaotic in the technical sense and that's what makes it hard to predict. Even our solar system is somewhat chaotic making predictions of planetary trajectories for long times into the future very difficult.”

Carroll and Pecora both hail from the Magnetic Materials and Nonlinear Dynamics Section at NRL where they continue research into networks and individual systems such as radars, radios, and structures. They help solve signal-processing problems in radar and communications.


About the U.S. Naval Research Laboratory

NRL is a scientific and engineering command dedicated to research driving innovative advances for the Navy and Marine Corps from the seafloor to space and in the information domain. NRL headquarters is located in Washington, D.C., with major field sites in Stennis Space Center, Mississippi, Key West, Florida, and Monterey, California, and employs approximately 2,500 civilian scientists, engineers and support personnel.