An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | Oct. 22, 2020

NRL researchers evaluate ultraviolet sources, combat COVID-19

By Nicholas E. M. Pasquini, U.S. Naval Research Laboratory, Corporate Communications

U.S. Naval Research Laboratory researchers evaluated commercial ultraviolet (UV) sources for viral disinfection to combat COVID-19 on land and at sea, and established a dedicated UV characterization lab in five days to ensure safe introduction and effective operation of UV sources across the Fleet.

The Navy is investigating UV–C band (UVC) light as a potential disinfection technique for niche applications against COVID-19 for materiel going onto a ship, for common use areas on a ship, and general room disinfection on ships or shore facilities.

In a short period of time Brett Huhman, in NRL’s Plasma Physics Division, reconfigured a laboratory space, conferred with subject matter experts across the NRL Materials Science and Component Technology directorate, and borrowed needed equipment to establish a UV characterization laboratory.

“Testing at NRL includes UV unit longevity and reliability, identifying easy-to-use dosimeters, reflections from shipboard surfaces, and secondary ozone generation from these UV systems,” Huhman said. “Scientists at other Navy labs are using NRL data to help them test efficacy against viral loads on Navy and Marine relevant surfaces, such as bare metal tools and painted metal surfaces, and cardboard boxes.”

There are numerous companies offering products that produce UV light and are designed for a variety of small and large-scale applications. The Naval Sea Systems Command (NAVSEA) requested NRL scientists to study and characterize the energy density, UV spectrum, and reliability of commercially available units.

“As the Navy wishes to quickly evaluate the efficacy of these commercial sources before procurement, a small investment was deemed necessary, in order to help the Navy ‘verify before we buy,’” said Joseph Schumer, branch head for NRL’s pulsed power physics group and program manager. “We have learned a lot about the reliability of commercial sources.”

Ultraviolet (UV) is light with wavelengths between 200 and 400 nanometers (nm). UV can be divided into 3 bands in this range: UVA (315-400 nm), UVB (280-315 nm), and UVC (200-280 nm). Each band represents a specific part of the UV spectrum and travels through the atmosphere differently. UVC from the Sun is unable to get to the Earth's surface, as the atmosphere will block it.

Testing began in mid-April after NRL received 15 18-watt, hand-held wands from NAVSEA. Since then, the team has tested nine different mercury and xenon-based UV sources with plans to evaluate both LED and plasma-based excimer sources.

“LED and plasma-based sources are emerging technologies, and represent the use of wavelengths not traditionally used for germicidal disinfection,” said Huhman. “Mercury sources have historically dominated the market.”

Navy researchers continue to evaluate commercial units already being used in hospitals and for other applications for efficacy on Navy-relevant surfaces. The NRL UV team is receiving items on a bi-weekly basis to evaluate.

NRL’s work will help identify situations where use of UV provides sufficient viral disinfection at a particular energy level and also develop standard operating procedures to ensure safe UV operation for the Fleet.


About the U.S. Naval Research Laboratory

NRL is a scientific and engineering command dedicated to research that drives innovative advances for the Navy and Marine Corps from the seafloor to space and in the information domain. NRL headquarters is located in Washington, D.C., with major field sites in Stennis Space Center, Mississippi, Key West, Florida, and Monterey, California, and employs approximately 2,500 civilian scientists, engineers and support personnel.