An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | Aug. 12, 2013

NRL Develops Low Cost, High Efficiency Solar Sensor

By Daniel Parry

Research scientists at the U.S. Naval Research Laboratory (NRL) Electronics Science and Technology Division have developed a novel low cost, highly efficient spectral sensor for field analysis of solar cell irradiance performance and spectral distribution.

Mobile solar power units have been recognized as a promising route toward decreasing the dependence of the military on fossil fuel generated power. To date, a multitude of mobile solar powered systems are under development that range from man portable highly flexible photovoltaic blankets, solar powered aircraft, trailer based hybrid power units, and underwater sensor applications.

Spectral radiometers are widely used to measure the spectrum of emitted, transmitted, or reflected light of a given material. Current spectral radiometers generally require sophisticated optical components for beam forming and diffraction, refined electronic components for the signal readout or moving parts that contribute to inefficient power consumption and high production costs.

We have invented a novel minimum size, ultra-low power spectral radiometer unit with integrated data storage functionality and a battery lifetime of up to several years, said Dr. R. Hoheisel, NRL Solid State Devices Section. In addition, the system can be produced at the expense of under $20 and features very high sensitivity and linearity.

The sensor system can be used in remote solar radiation monitoring applications such as mobile solar power units as well as in long-term environmental monitoring systems where high precision and low power consumption is a necessity. Because of the modularity of the system, adjustment to different wavelength bands as well as different light intensities is easily possible, providing a tailored solution to suit the needs of the end-user.

A challenge to research of long-term expeditionary devices was we had no information regarding when, and how long, mobile solar power units were in the sun, Hoheisel said. These units have a dynamic range of 0.01 - 2 suns measured in 30-second intervals, a data capacity of 128 megabytes (MB), an average power consumption of 100 microwatts (uW) and an independent real time clock.

Due to its minimum size combined with an extremely long lifetime, this completely autonomously operational sensor system paves the way for a dramatically wider operational range of solar radiation measurement units leading to not only a better understanding but also a highly reliable and precise forecast of available solar power for various mission profiles.

The U.S. Marine Corps (USMC) Expeditionary Energy Office (E2O), have developed and prototyped this photovoltaic system to meet the unique needs of USMC expeditionary power for robust, high-efficiency solar panels suitable for adaptation to rechargeable batteries in the field. USMC E2O and the Office of Naval Research (ONR) Expeditionary and Irregular Warfare Office have contributed to this research.