An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | Oct. 30, 2011

Navy's Electromagnetic Railgun Reaches Testing Milestone

By Daniel Parry, U.S. Naval Research Laboratory Corporate Communications

The U.S. Naval Research Laboratory Materials Testing Facility demonstrated, Oct.31, the one-thousandth successful firing of its Electromagnetic Railgun, reaching a materials testing milestone in the weapon's technological development and future implementation aboard U.S. Navy warships.

This test demonstrates continued advances in armature development, rail design, and barrel materials used in high power railgun launch, said Dr. Robert Meger, head, NRL Charged Particle Physics Branch. Firing up to 15 shots per week on the laboratory's experimental railgun, researchers at NRL perform detailed testing and analysis of rails and armatures, providing S&T expertise to the Navy program that is directly applicable to tests at large-scale power levels.

Many of the 1000 shots taken on the Materials Testing Facility railgun have been designed to test different barrel designs and to quantify damage generated during high power launch. The innovations and understanding generated by NRLs' S&T program have been fed directly into the Office of Naval Research's Electromagnetic Railgun program and transferred to full-scale tests conducted at the Naval Surface Warfare Center, Dahlgren, Va.

A railgun is a form of single turn linear motor. Magnetic fields generated by high currents driven in parallel conductors, rails, accelerate a sliding conductor, known as an armature, between the rails. The velocity generated by the system is limited by rail strength and armature materials and their response to the high currents and extreme pressures generated during launch.

At launch, heat deposited in the armature and near the surface of the rails due to high currents and friction, or. viscous heating generated at the sliding interface, leads to temperatures sufficient to melt most metals including the armature material. If the heating and extreme pressures also damage the rail surface, it can destroy the contact surface and condemn the gun barrel. NRL S&T research has pioneered multiple barrel and armature designs that minimize or mitigate this damage even during successive high power launches.

First fired March 6, 2007 at a magnitude of 0.5 megajoules, the railgun system at NRL has been modified and enhanced over the last four years to operate routinely at a 1.5 megajoule launch energy - a megajoule is a measurement of kinetic energy associated with a mass traveling at a certain velocity. In simple terms, a one-ton vehicle moving at 100 mph has approximately one megajoule of kinetic energy.

A railgun weapons system must be able to launch hundreds of projectiles and withstand extreme pressures, currents and temperatures, said NRL Commanding Officer, Capt. Paul Stewart. Today's firing of the one-thousandth shot demonstrates Navy researchers are steadily progressing toward achieving that goal, developing a more effective and efficient future ship combat system.

The Railgun Materials Testing Facility railgun focuses on materials issues for a major Navy effort to develop a long-range, electromagnetic launcher for a future electric ship. The NRL Plasma Physics Division conducts a broad program in laboratory and space plasma physics and related disciplines, high power lasers, pulsed-power sources, intense particle beams, advanced radiation sources, materials processing, and nonlinear dynamics.


About the U.S. Naval Research Laboratory

NRL is a scientific and engineering command dedicated to research that drives innovative advances for the U.S. Navy and Marine Corps from the seafloor to space and in the information domain. NRL is located in Washington, D.C. with major field sites in Stennis Space Center, Mississippi; Key West, Florida; Monterey, California, and employs approximately 3,000 civilian scientists, engineers and support personnel.
 
For more information, contact NRL Corporate Communications at (202) 480-3746 or nrlpao@nrl.navy.mil