An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | April 20, 2022

NRL Conducts Successful Terrestrial Microwave Power Beaming Demonstration

By Paul Cage, U.S. Naval Research Laboratory Corporate Communications

A team of researchers from the U.S. Naval Research Laboratory recently demonstrated the feasibility of terrestrial microwave power beaming by transmitting 1.6 kilowatts of power over 1 kilometer (km) at the U.S. Army Research Field in Blossom Point, Md., the most significant power beaming demonstration in nearly 50 years.
 
Microwave power beaming is the efficient, point-to-point transfer of electrical energy across free space by a directive microwave beam. The project, Safe and COntinuous Power bEaming – Microwave (SCOPE-M), was funded by the Office of the Undersecretary of Defense for Research and Engineering’s Operational Energy Capability Improvement Fund and led by the project principal investigator, Christopher Rodenbeck, Ph.D., Head of the Advanced Concepts Group, NRL.
 
Within 12 months, NRL established the practicality of terrestrial microwave power beaming and beamed 1 kilowatt (kW) of electrical power over a distance of 1 km using a 10 gigahertz (GHz) microwave beam. SCOPE-M demonstrated power beaming at two locations, one at the U.S. Army Research Field at Blossom Point in Maryland, and the other at The Haystack Ultrawideband Satellite Imaging Radar (HUSIR) transmitter at the Massachusetts Institute of Technology (MIT) in Massachusetts.
 
“The reason for setting those targets is to push this technology farther than has been demonstrated before,” said Paul Jaffe Ph.D., Power Beaming and Space Solar Lead. “You don’t want to use too high a frequency as it can start losing power to the atmosphere,” Rodenbeck said. “10 GHz is a great choice because the component technology out there is cheap and mature. Even in heavy rainfall, loss of power is less than five percent.”

 



Blossom Point, Maryland  –  Safe and Continuous Power Beaming Microwave (SCOPE-M) is a U.S. Naval Research Laboratory research project which delivers one kilowatt of electrical power at a distance of a kilometer using a microwave beam. SCOPE-M is built of tens of thousands of x-band antennas. Each of these antennas is connected to a small rectifier diode that diode converts the incident microwave power into DC electrical power. This demonstration paves the way for power beaming on earth in space and power beaming from space to the earth.

 
In Maryland, the team exceeded their target by 60 percent by beaming 1.6 kW just over 1 km. At the Massachusetts site, the team did not have the same peak power, but the average power was much higher thereby delivering more energy. Jaffe said these demonstrations pave the way for power beaming on Earth, in space, and from space to Earth using power densities within safety limits set by international standards bodies.
 
“As engineers, we develop systems that will not exceed those safety limits,” Jaffe said. “That means it’s safe for birds, animals, and people.”

Jaffe went on to say that during past experiments with laser power beaming using much higher power densities, the engineers were able to successfully implement interlock systems so if something approached the beam it would turn off.
 
“We did not have to do that with SCOPE-M because the power density was sufficiently low that it was intrinsically safe,” Jaffe said.
 
Brian Tierney, Ph.D., SCOPE-M electronics engineer, said the DOD is interested in wireless power beaming, particularly wireless power beaming from space, and that a similar rectenna (rectifying antenna) array as used for SCOPE-M could be used in space. A rectenna is a special type of receiving antenna for converting electromagnetic energy into direct current electricity in wireless power transmission systems.
 
“Although SCOPE-M was a terrestrial power beaming link, it was a good proof of concept for a space power beaming link,” Tierney said. “The main benefit of space to Earth power beaming for the DOD is to mitigate the reliance on the fuel supply for troops, which can be vulnerable to attack.”
 
Besides being a DOD priority, Rodenbeck stated power beaming is the ultimate green technology. Unlike other sources of clean energy, which provides intermittent and sporadic electrical power, power beamed from space to Earth can provide power continuously, 24 hours a day, seven days a week, 365 days a year.
 
“That is something no other form of clean energy can do today,” Rodenbeck said. “From the standpoint of technology readiness level, I feel we are very close to demonstrating a system we can truly deploy and use in a DOD application.”
 
 
About the U.S. Naval Research Laboratory
 
NRL is a scientific and engineering command dedicated to research that drives innovative advances for the U.S. Navy and Marine Corps from the seafloor to space and in the information domain. NRL is located in Washington, D.C. with major field sites in Stennis Space Center, Mississippi; Key West, Florida; Monterey, California, and employs approximately 3,000 civilian scientists, engineers and support personnel.
 
For more information, contact NRL Corporate Communications at (202) 480-3746 or nrlpao@nrl.navy.mil.