An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | July 13, 2022

SIRI-2 to Qualify Technologies for Radiation Detection in Space

By Paul Cage, U.S. Naval Research Laboratory Corporate Communications

U.S. Naval Research Laboratory scientists launched the second Strontium Iodide Radiation Instrument (SIRI-2) instrument in December 2021 onboard Space Test Program (STP) Sat-6. SIRI-2, a gamma-ray spectrometer, will demonstrate the performance of europium-doped strontium iodide gamma ray detection technology with sufficient active area for Department of Defense (DoD) operational needs.
 
The first SIRI mission was launched Dec. 3, 2018 onboard STP Sat-5 with a one-year mission to investigate the detector's response to on-orbit background radiation in low Earth orbit (LEO). The much larger, SIRI-2 instrument is operating in a geosynchronous orbit where the radiation background is significantly different in composition.
 
“The technology being demonstrated in SIRI-2 will need to detect small radiation signatures or signals in the highly variable background radiation fields found in space,” Lee Mitchell, Ph.D., an NRL Research Physicist said. “The instrument will also study transient phenomena, such as solar flares during the one-year mission.”
 
The SIRI line of instruments is designed to space-qualify new gamma-ray scintillator materials and readout electronics.
 
A scintillator is a material that exhibits the property of luminescence when excited by ionizing radiation and is commonly used for radiation detection. Luminescent materials, when struck by incoming particles, absorb its energy and re-emit the absorbed energy in the form of visible light.
 
The instrument will also test new Silicon Photomultiplier (SiPM) technology which converts the scintillation light to electronic signals and is expected to replace conventional photomultiplier tubes. These materials and electronics, to varying degrees, react differently to the intense on-orbit background radiation.
 
“We hope to show this technology can be used in space, since it can be difficult for some technologies developed for terrestrial applications to operate in the harsh space environment,” Mitchell said.
 
The DoD has been utilizing scintillation detectors in space since the 1960’s Vela high-altitude nuclear detection program. Scintillator technology is widely used throughout the scientific community in areas such as astrophysics and solar and earth science.
“While we reduced the cost, weight and power for comparable sized instruments,” Mitchell said. “These improvements led to greater sensitivity and in turn improve source detection and identification.”
 
SIRI-2 completed on-orbit checkout on Jan. 10. Mitchell said, “So far, the instrument is performing well.”
 
One thing that has Mitchell and his team excited is seeing the pickup of solar activity. The solar cycle is an 11-year change in the Sun's activity measured in terms of variations in the number of observed sunspots on the solar surface, and the mission is well aligned with the peak of Solar Cycle 25.
 
“While the peak of the solar cycle is expected to occur in 2025, it appears the Sun is showing significant activity earlier than expected,” Mitchell said. “Solar flare activity is most active at the peak of the solar cycle, so we hope to not only space-qualify new technology for the DoD but also make significant contributions to solar physics by studying gamma-rays emitted during solar flares.”
 
A follow on to SIRI-2, SIRI-3 will take knowledge gained from the previous missions to develop a large prototype instrument that is expected to launch in late 2025.

 
About the U.S. Naval Research Laboratory

NRL is a scientific and engineering command dedicated to research that drives innovative advances for the U.S. Navy and Marine Corps from the seafloor to space and in the information domain. NRL is located in Washington, D.C. with major field sites in Stennis Space Center, Mississippi; Key West, Florida; Monterey, California, and employs approximately 3,000 civilian scientists, engineers and support personnel.
 
For more information, contact NRL Corporate Communications at (202) 480-3746 or nrlpao@nrl.navy.mil.