An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | Sept. 19, 2023

First Phase of the MAGPIE Weather and Climate Experiment Completed in Barbados

By Mary Hamisevicz, U.S. Naval Research Laboratory Corporate Communications

The U.S. Naval Research Laboratory (NRL) completed its contribution to the Moisture and Aerosol Gradients/Physics of Inversion Evolution (MAGPIE) program, the first phase of an 18-month mission in Barbados. Its aim is to study the exchange processes of heat, moisture, African dust, and sea spray between the atmosphere and ocean over the Subtropical Atlantic Ocean.
 
Predominately sponsored by the Office of Naval Research (ONR) and organized by NRL, MAGPIE was formed in partnership with scientists at the Naval Postgraduate School (NPS), Caribbean Institute for Meteorology and Hydrology (CIMH), the National Ocean and Atmosphere Administration (NOAA), National Aeronautics and Space Administration (NASA), and many universities. The goal is to understand how energy and atmospheric constituents exchange between the warm subtropical ocean and the atmosphere through clouds and its subsequent relationships to weather and climate.
 
“These types of exchange processes are what drive weather and climate, and an understanding is needed to allow us to monitor and ultimately forecast impactful atmospheric phenomenon,” said Jeffrey Reid, PhD., NRL’s Science Lead of MAGPIE.
 
The MAGPIE experiment was conducted during a crucial period in atmosphere research. On August 31 it completed its first phase of airborne research with 17 flights coinciding with record global ocean temperatures.
 
“We are in uncharted territory,” noted Elizabeth Thompson MAGPIE’s NOAA lead from NOAA’s Earth System Research Laboratories in Boulder Colorado.  “Typically in El Nino year’s hurricane activity is at a minimum in the Atlantic.  Yet, record warm oceans is what drives hurricanes and other severe weather.  We need to understand how the ocean-atmosphere system will interact.”
 
Being ~3000 miles downwind of Africa with good scientific infrastructure, Barbados has a long history of international collaboration in ocean/atmosphere basic research.   Along with the University of Miami Barbados Atmospheric Composition Observatory (BACO), the nearby German Max Plank Institute for Meteorology: Barbados Cloud Observatory (BCO), and assets of the Barbados Meteorology Service and CIMH, Barbados is a natural laboratory to not only understand how energy is cycled but to develop new atmospheric monitoring technologies.
 
 “We are questioning fundamental conceptual models of air motion of marine and island environments as well as the common measurement methodologies,” said Dr. Reid. ”To make much needed progress in atmospheric prediction, we developed a team across agencies to advance promising new measurements and data integration technologies.”
 
Central to MAGPIE is the development of new lidar, radar, and hyperspectral radiometry technologies, in conjunction with advanced satellite remote sensing data provided by NASA and NOAA. In particular, ground and airborne lidar systems from the University of Wisconsin and the University of Colorado allow scientists to see the various scales of air motion in unprecedented detail.  Context for these measurements are then provided by BACO, MAGPIE’s research aircraft, and a variety of space based remote sensing data. All of these datasets are being integrated and used to evaluate and improve models at the meter scale at the University of Notre Dame and University of Minnesota, up through global scales by NRL and NOAA.
 
MAGPIE operations are consistent with the U.S. Navy’s desire to improve our ability to monitor, predict, and operate within the coupled ocean-atmosphere system that drives impactful maritime weather such as hurricanes, organized thunderstorms and island flooding. These desires span far beyond operational weather to planning for the future. The Navy will work with Caribbean partners to address region-specific needs for early warning, disaster risk reduction, and climate adaptation, and to provide access to global climate data, tools, and information. By combining the capabilities of BACO with the innovative methodologies of MAGPIE, we will gain invaluable insights into the atmospheric processes that impact our region.
 
With the first phase completed, scientists will now evaluate this last summer’s data and the mission’s methodologies to further refine observation plans for summer 2024. From there, findings will be incorporated into operational systems. The MAGPIE augmentation to the Ragged Point BACO is expected to continue through 2024. Included in winter 2024 is an overall refurbishment of the BACO by means of a US National Science grant to help ensure the data record continues.
 
 
About the U.S. Naval Research Laboratory

NRL is a scientific and engineering command dedicated to research that drives innovative advances for the U.S. Navy and Marine Corps from the seafloor to space and in the information domain. NRL is located in Washington, D.C. with major field sites in Stennis Space Center, Mississippi; Key West, Florida; Monterey, California, and employs approximately 3,000 civilian scientists, engineers and support personnel.
 
For more information, contact NRL Corporate Communications at (202) 480-3746 or nrlpao@nrl.navy.mil.