An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | March 8, 2024

NRL Participates in International Campaign Investigating Polar Low Phenomena

By Daniel Parry, Corporate Communications U.S. Naval Research Laboratory

U.S. Naval Research Laboratory (NRL) research meteorologist James Doyle, Ph.D., joins an international team of scientists to investigate meteorological processes associated with Arctic cold air outbreaks.
 
From late February through early April, the 45-day international field campaign CAESAR, short for Cold-Air outbreak Experiment in the Sub-Arctic Region, is focused on cold-air outbreaks that occur as cold Arctic air flows-out over warmer open waters between northern Norway and the Arctic ice edge.
 
Cold-air outbreaks, or CAOs -- one of the most extreme meteorological air mass transformations on Earth -- can occur when cold Arctic air flows over frozen land masses or sea ice to over much warmer open ocean waters resulting in the formation of convective boundary layers that produce hazardous winds and seas, and spawn small-scale, intense “polar lows.”
 
“Despite the profound impact that CAOs have on atmospheric and oceanic circulations in the Arctic, as well as the important implications for Navy operations, surprisingly little is known about the nature of intense surface flux impacts on the atmosphere and ocean boundary-layer structure,” said Doyle. “The nature of the air-sea-ice interaction and cloud processes in CAOs are rapid with abrupt transitions, which have been a roadblock to process understanding and model predictions.”
 
CAOs pose challenges to Navy operations because of the severe environmental conditions and the rapid changes in the atmosphere and ocean boundary layer properties that impact electromagnetic and acoustic propagation characteristics. The CAESAR mission seeks to investigate the marine atmospheric boundary layer characteristics and shallow, precipitating clouds that form during CAOs, as well as the mesoscale circulations that lead to polar low developments.
 
“Under favorable conditions the air-sea interaction intensifies, triggering shallow and vigorous convective cells that produce hazardous winds and seas, and under some conditions lead to the genesis of small-scale, intense polar lows,” said Doyle. “Conventional theories and model parameterizations in Arctic CAOs have been lacking this vital data and CAESAR will provide a detailed characterization that will form the basis for NRL boundary layer and coupled modeling studies.”
 
Based in Kiruna, Sweden, the CAESAR team will utilize the National Science Foundation (NSF)/National Center for Atmospheric Research (NCAR) center’s C-130 Hercules aircraft, with in situ and remote sensors and dropsondes for sampling the Arctic air mass -- from the CAO origin at the ice edge through the transformation -- as the boundary layer gets modified downstream. The C-130 suite of instruments also include airborne radar, LiDAR, and aerosol and cloud precipitation probes activated during CAO events.
 
CAESAR will also make use of Norwegian ground-based radars and instruments located on Norway’s Bear Island. 
 
 
About the U.S. Naval Research Laboratory
 
NRL is a scientific and engineering command dedicated to research that drives innovative advances for the U.S. Navy and Marine Corps from the seafloor to space and in the information domain. NRL is located in Washington, D.C. with major field sites in Stennis Space Center, Mississippi; Key West, Florida; Monterey, California, and employs approximately 3,000 civilian scientists, engineers and support personnel.
 
For more information, contact NRL Corporate Communications at (202) 480-3746 or nrlpao@us.navy.mil.