An official website of the United States government
A .mil website belongs to an official U.S. Department of Defense organization in the United States.
A lock (lock ) or https:// means you’ve safely connected to the .mil website. Share sensitive information only on official, secure websites.

Home : Our Work : Areas of Research : Plasma Physics

    Plasma Physics

Phone: (202) 767-5635

 

Overview

The Plasma Physics Division conducts broad theoretical and experimental programs of basic and applied research in plasma physics, laboratory discharge, and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power sources, laser physics, advanced spectral diagnostics, and nonlinear systems. 

The effort of the Division is concentrated on a few closely coordinated theoretical and experimental programs. Considerable emphasis is placed on large-scale numerical simulations related to plasma dynamics; ionospheric, magnetospheric, and atmospheric dynamics; nuclear weapons effects; inertial confinement fusion; atomic physics; plasma processing; nonlinear dynamics and chaos; free electron lasers and other advanced radiation sources; advanced accelerator concepts; and atmospheric laser propagation.

Core Capabilities 

  • Radiation Hydrodynamics - The principal emphasis is in the development and application of theoretical models and state-of-the-art numerical simulations combining magnetohydrodynamics, high energy density physics, atomic and radiation physics, and spectroscopy.
  • Laser Plasma - Primary areas of research include physics underpinnings of laser fusion, high-energy-gain laser-inertial- fusion target designs, experiments and simulations of laser-matter interactions at high intensity, advancing the science and technologies of high-energy krypton fluoride and argon fluoride lasers, advancing the technologies of durable high-repetition-rate pulse power and electron-beam diodes for laser pumping and other applications, laser fusion as a power source.
  • Space and Laboratory Plasmas - Space research includes theoretical, numerical, and laboratory and space experimental investigations of the dynamic behavior of the near-Earth space plasmas and radiation belts, and the modification of space plasmas for strategic effects on HF communications, satellite navigation, over-the-horizon radar, and UHF satellite communications.  Applications-oriented plasma research is performed in the production, characterization, and use of low-temperature plasmas and related technology for applications to advance capabilities across the Navy and DOD.  Pulsed-power investigations include electromagnetic launch science and technology and research on directed energy systems for the U.S. Navy.
  • Pulsed Power Physics - Experimental and theoretical research is performed to advance pulsed power driven accelerator technology in areas relevant to defense applications. Research concerns the production, transport, characterization, and modeling of pulsed plasmas and intense high-power, charged particle beams using terawatt-class hundred-kilojoule pulsed power systems that employ capacitive or inductive energy storage and advanced switching. 
  • Directed Energy Physics - Research encompasses the integration of theoretical/computational and experimental research relevant to DOD, ONR, DARPA, and DoE in the areas of ultra-high field laser physics, atmospheric propagation of intense lasers, advanced radiation and accelerator physics, laser-generated plasma-microwave interactions, and dynamics of nonlinear systems. 

Facilities Fact Sheets

  • Electra Experimental Lab Facility - Electron beam pumped laser.  [ Download PDF]
  • NIKE KrF Laser Target Facility.  [Download PDF]
  • Space Plasma Simulation Chamber.  [Download PDF]

Plasma Physics News

NEWS | June 15, 2021

Adding Predictability to Fleet Communications During Solar Flares

By Paul Cage, U.S. Naval Research Laboratory Corporate Communications

A U.S. Navy destroyer is operating in the Western Pacific and is impacted by the effects of a massive solar flare. This event has caused a ripple affect across the globe; impacting power grids, destroying electrical infrastructure and causing havoc to electronic communications. Our ship’s captain wonders how long this will last?

If Jeff Reep, an astrophysicist at the U.S. Naval Research Laboratory has his way, the captain would be able to answer that question with real-time forecasting. 

Reep published a paper, “Forecasting the Remaining Duration of an Ongoing Solar Flare.” In this work, Reep developed a method using a machine learning algorithm that would allow some prediction to the fleet for how long a flare might actually last.

“I study solar flares and I spent my career modeling them,” Reep said. “We generally think of flares in terms of their size or their brightness, but we often ignore the part about their duration.”

Solar flares, from the Navy's perspective, impact operations due to disturbances in the ionosphere, home to virtually all the charged particles in Earth's atmosphere right at the edge of space forming the boundary between Earth's lower atmosphere, where we live and breathe, and the vacuum of space. Ionospheric disturbances change the propagation of radio signals in the upper atmosphere, an effect that is familiar to radio operators around the world.

What makes predicting the duration difficult is that the length of the flare does not relate to the size of a flare. In fact, there is no correlation to any of the basic parameters of a flare. 

For Reep and others in his field, modeling solar flares involves computationally intensive models that cannot be run in real time.

“We cannot simply predict the length,” he said. “We had to come up with something a bit more statistical.” 

Reep has been looking at solar flare durations for a few years from the perspective of physical modeling. Thanks to a NASA “Living With a Star” grant, Reep combined the expertise of NRL solar physicists and the expertise of an NRL ionosphere modeling group to investigate the effects that a solar flare produces. This work is aimed to predict what the impact on the ionosphere would be, and consequently, what the impact on Naval operations would be.

“When we create a model of the solar flare, it might take weeks of computational time to run,” Reep said. “But a flare might be done in an hour, which means it can’t be used for real-time predictions. So we wanted something that would give us a quicker answer that the Navy could actually use.”

In comes the Random Forest Regressor, a machine learning technique that is fed a series of variables and that uses “decision trees” to predict features of an event. Think of it in terms of the game show, “Who Wants to be a Millionaire?” On the show, contestants have three life-lines, one of which is to poll an audience of 100 people. If no one knows which of the four answers is correct, the answer splits randomly. So 25 in each column. But if 10 people in the audience know the answer, then 10 people are going to be in one of those four columns definitively, and the other 90 people will be split randomly.

“Having that small number of people get the question right makes the answer pretty obvious because that one answer will stick out above the rest,” Reep said. “Each individual decision tree doesn't have to be good at making predictions, but when you throw 1,000 of them together, if a small fraction of them are good at making predictions, you can actually get something that's reasonable.”

So how close are researchers to providing the answer to the captain of the ship on how long the flare-effects will last?

“This paper itself is a proof of concept. It's not a developed model that can go on a Navy ship right now,” Reep said. “The challenge is acquiring all the data in real time so we can have a functional model that's constantly running, and when a flare goes off, it can make a real-time prediction. We still have a few roadblocks to get past.”

The Living With A Star (LWS) program targets specific aspects of the Sun-Earth system that affect life and society. LWS provides a predictive understanding of the Sun-Earth system, linkages among the interconnected systems, and, specifically, space weather conditions at Earth and the interplanetary medium.


About the U.S. Naval Research Laboratory 

NRL is a scientific and engineering command dedicated to research that drives innovative advances for the U.S. Navy and Marine Corps from the seafloor to space and in the information domain. NRL is located in Washington, D.C. with major field sites in Stennis Space Center, Mississippi; Key West, Florida; Monterey, California, and employs approximately 2,500 civilian scientists, engineers and support personnel.

For more information, contact NRL Corporate Communications at (202) 480-3746 or nrlpao@nrl.navy.mil.